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a b s t r a c t 

Accurate computer simulation is important for understanding the role of irradiation-induced defects in 

zirconium alloys found in nuclear reactors. Of particular interest is the distribution and trapping of hy- 

drogen, and the formation of zirconium hydride. These simulations require an accurate representation of 

Zr-H bonding in order to predict the behaviour of H around atomic-scale defects, dislocation lines, and 

dislocation loops. Here we explore the bonding of H in Zr under strain, how well it is represented by 

state-of-the-art Embedded Atom Method (EAM) potentials, and what physics is needed for an accurate 

representation in a Linear Combination of Atomic Orbitals (LCAO) Density Functional Theory (DFT) frame- 

work. For H in dilute solution under hydrostatic strain in the range -10% to +10%, solution energies and 

Zr-H bond lengths computed using EAM potentials are found to be in poor agreement with plane-wave 

DFT results. We note that the bond lengths are in a poor agreement even in equilibrium. LCAO basis sets 

are used to explore the importance of electron distribution around H atoms, and the transfer of electrons 

between H and Zr. The electron distribution around H atoms is found to be important to the explanation 

of the difference between octahedral and tetrahedral interstitial sites for H, with H in a tetrahedral site 

having very similar bonding to H in zirconium hydrides. The interatomic electron transfer has a smaller 

impact but is needed for maximum accuracy. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The interaction of hydrogen with zirconium is of a great inter- 

st in the nuclear industry. When H atoms penetrate into the metal 

atrix, they diffuse according to the stress gradients. The H dif- 

usion is further complicated by the presence of defects, some of 

hich can trap a significant number of H atoms (9 for a vacancy 

t 0K) [1] . Once the local H concentration exceeds the solubility 

imit, zirconium hydrides precipitate, eventually leading to embrit- 

lement of the material and possibly to delayed hydride cracking 

2] . While these phenomena have been studied by a range of ex- 

erimental techniques, the distribution of H can be hard to quan- 

ify, especially on the scale of dislocation loops or smaller defects, 

hich are very common in irradiated material. 

Zirconium-hydrogen interactions have also been a subject for 

omputational modelling. At the continuum scale, the interaction 

f H with strained Zr can be described by linear elasticity the- 

ry by using the elastic dipole tensor of H, the solubility of H, 

nd other parameters from atomistic simulations or experiment 
∗ Corresponding author. 
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3] . Other continuum techniques, such as phase field modelling, 

lso require a large number of parameters. While in theory these 

odels could also include defects (such as dislocations and dislo- 

ation loops), this would again require more input from smaller 

cale simulations or numerical optimisation. 

Small dislocation loops and dislocation lines can be simulated 

irectly at the atomic scale. While very small dislocation loops 

re just on the edge of our current computational ability for den- 

ity functional theory (DFT) [4] , empirical potentials can readily 

e used for these simulations. In fact, a number of previous pa- 

ers use empirical potentials to look at diffusion of hydrogen near 

islocation loops, attempting to quantify the amount of H near 

he loops at a given temperature using molecular dynamics [5,6] . 

hile the potentials are typically fit to DFT calculations, for inter- 

ctions between hydrogen and point defects in Zr, the correct be- 

aviour in the strained environment around a dislocation loop has 

ot been tested. 

The strain fields around dislocations determine the long range 

nteraction with other dislocations and point defects, and thus are 

mportant for the dynamics of the system of which they are a 

art. They are thus also discussed in this work. While they are 

ot purely hydrostatic, we believe that the poor performance of 

he two empirical potentials for hydrostatic strain could transfer 
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o more complicated strain fields. However, given that hydrostatic 

train changes volume, while shear does not, making the connec- 

ion is not completely straightforward. The performance in shear 

nd uniaxial strains deserves more exploration. 

There are a range of computational techniques available to us to 

tudy the behaviour of H in Zr. We employ three of them in this 

ork: Embedded Atom Potentials (EAM), Density Functional The- 

ry (DFT) with a plane wave (PW) basis, and DFT with a Linear 

ombination of Atomic Orbitals (LCAO) basis set. As already hinted 

t above, they each have advantages and disadvantages: by using 

ll three we aim to increase the amount of reliable information 

bout the systems we can obtain. In brief, EAM enables the largest 

cale simulations to be performed at reasonable cost, and thus al- 

ows the effect of varying system parameters (such as cell size and 

train) to be explored efficiently. However, its accuracy is not al- 

ays sufficient. Plane wave DFT enables accurate reference values 

o be computed with some confidence, and thus provides useful 

eference data. LCAO DFT can be faster than PW DFT, but also can 

e less accurate. However, it retains enough accuracy to provide 

seful insight, and the formalism lends itself naturally to interpre- 

ation of results in terms of atomic and bond properties. 

In this work we evaluate the performance of two of the current 

tate-of-the-art Embedded Atom Method (EAM) potentials for the 

r-H system under hydrostatic strain: one is the Zr-H potential de- 

eloped by Maxwell et al. [7] , which is based on the widely used

A#3 potential for pure Zr [8] ; the other is the BMD19.2 poten- 

ial [5] . These potentials have been specifically selected because of 

heir suitability for modelling of H in solution, and most notably 

heir ability to predict the correct ground state interstitial site for 

. While H is found to be more stable in the tetrahedral site by 

oth ab initio calculations [1] and experimentally [9] , other empir- 

cal potentials available in the literature predict the larger octahe- 

ral site to be more stable than the tetrahedral site. We note that 

ain focus of this work is not to criticise existing potentials, but 

o explore why they fail and therefore what changes or additions 

re needed to represent this bonding accurately. 

Electronic structure methods are able to provide an accurate 

escription of bonding. However, with traditional plane-wave DFT 

t can be difficult to analyse the local bonding because of the 

on-local nature of the basis set. An LCAO technique has been 

sed which allows for a simple attribution of electronic density to 

toms, as well as allowing further approximations. This helps us to 

dentify the physical phenomena that are important for the inter- 

ctions, helping us to build simpler models. The main phenomenon 

nvestigated is charge transfer, both between different atoms, and 

etween different atomic orbitals on one atom. While the primary 

ocus is on H in dilute solution, the differences between the inter- 

ctions involving H in solution and in hydrides is also discussed. 

his work builds on our previous work on pure Zr [10] , allowing 

his paper to focus on the representation of hydrogen. Most impor- 

antly, a large part of this work has been dedicated to the choice 

f an appropriate basis set and its implications for the processes 

mportant to bonding. 

We note that zero-point motion of hydrogen was not included 

n our calculations. It has been found to change the values of in- 

erstitial formation energies [11] , though not the energy ordering 

f the octahedral and tetrahedral sites. Given the greatly increased 

omputational cost associated with computing phonon spectra we 

ave just computed total energies of the structures. 

. Methods 

As noted above, several different methods for atomic scale sim- 

lation are used in this work, and their results are compared. All 

imulations use atomic relaxation at 0 K, with a fixed supercell 

ize. Plane-wave DFT calculations were performed as a reference. 
2 
o describe the electron-nucleus interactions, for Zr we used ultra- 

oft pseudopotentials to represent the 1s, 2s, 2p, 3s, 3p and 3d 

lectrons implicitly, while electrons in the 4s, 4p, 4d, 5s and 5p 

rbitals were modelled explicitly. For H, we used an on-the-fly 

OTF) pseudopotential generated by CASTEP to represent the nu- 

leus. These calculations were performed with the CASTEP soft- 

are [12] , using a plane-wave energy cutoff of 450 eV [13] and the 

xchange and correlation functional of Perdew, Burke, and Ernzer- 

of (PBE) [14] . We used a 20 × 20 × 12 grid of k points to sample

he Brillouin zone for the hcp unit cell of Zr and derived the grid 

or larger cells from that [13] . 

Calculations with empirical EAM potentials were performed us- 

ng the LAMMPS code [15] , with an interface provided by the 

tomistic Simulation Environment (ASE) Python package [16] . Two 

ecent EAM potentials were studied in order to find out their suit- 

bility for simulations of interstitial H in elastically strained Zr, 

amely the BMD19.2 potential [5] and the MA#3 potential [8] with 

he terms for H developed by Maxwell et al. [7] . While many other 

mpirical potentials are available in the literature [17–19] , none of 

hem is able to reproduce the ordering of the solution energy of H 

n different interstitial sites at zero pressure: instead they predict 

he ground state site for H to be in the larger octahedral site, in 

isagreement with both DFT results and experiments [9,20] . 

All other simulations for intermediate models were performed 

sing the PLATO code [21,22] . The main advantages of PLATO are: 

he ability to use a range of approximations with the same basis 

et; the availability of tools for straightforward building of different 

tom-centered basis sets for use with LCAO DFT and tight binding 

odels. This allows us to get a better understanding of the physics 

nvolved in H-Zr interactions, and what ingredients are needed to 

epresent it accurately. 

The theory behind the LCAO method, and the approximations 

sed to go from LCAO to tight binding, are described in detail in 

ur previous work [10] . Here, we only highlight the most relevant 

arts of the theory. Two levels of theory have been used in this pa- 

er: the full Kohn-Sham functional, which includes electronic self- 

onsistency, and the Harris-Foulkes functional, which approximates 

he former by not including self-consistency. For the Harris-Foulkes 

unctional we start from the superposition of atomic electron den- 

ities, and only one iteration is performed to find an approximate 

otal energy and electron density. Unfortunately, the current im- 

lementation in PLATO only enables single-point energy calcula- 

ions, so for the Harris functional calculations only, the structures 

elaxed using plane-wave DFT have been used to evaluate the per- 

ormance. The possibility of using 2-centre tight binding for this 

ystem is also briefly discussed. 

The main questions for the LCAO model are: what are the op- 

imal choices of pseudopotential and basis set? As this work is a 

ontinuation of the development of tight binding models for Zr, 

e have decided to keep the same GTH-LDA-q4 pseudopotential 

23] and 4d 5p basis set with a radial cutoff of 7.3 a 0 (Bohr radii),

s in the previous work [10] . This has shown reasonable results 

or bulk Zr for all LCAO calculations considered, and allowed bet- 

er computational efficiency than more complex or more extended 

asis sets. For H, the GTH-PBE-q1 pseudopotential was used [24] , 

nd a range of basis sets were considered. The suitability of basis 

et choice also provides some insight into the physics of H in Zr. 

oth the basis set confinement radius r 0 and the orbitals included 

ere varied. The orbitals used were based on atomic orbitals of an 

tom in a confinement potential given by 

 (r) = 

(
r 

r 0 

)6 

(1) 

here r 0 is a confinement radius and r is the distance from the 

entre of the atom, and the orbitals go to zero at r cut = r 0 + 1 . 0 a 0 .

hen appropriate, the orbitals were split into a long-range and 
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Fig. 1. The elastic strains for the structure identified as HCP by OVITO for a 〈 c/ 2 〉 ext edge dislocation, as a function of distance from the core. The atoms identified as other 

structures are shown in grey and not included in the scatter plots — these belong to the dislocation core, the stacking fault and the edge of the simulation where atoms are 

in contact with vacuum. The configuration was obtained using the MA EAM#3 potential [8] . 
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a  
 short-range part following the same formalism as SIESTA [25] . 

hen these split (double- ζ ) orbitals are used, the long-range part 

s marked by a star in the remainder of this paper. 

The focus of this paper is on hydrogen interstitial sites in zir- 

onium, therefore the majority of calculations were performed for 

his system. A supercell of 3 × 3 × 2 hcp unit cells, with a single

 atom in either an octahedral or a tetrahedral interstitial site has 

een used. We performed a systematic convergence test with cells 

izes ranging from 37 atoms to 289 atoms, and found the H so- 

ution energy changes by much less than 0.01 eV. A k-point grid 

f 10 × 10 × 10 was used for all DFT calculations (plane-wave and 

CAO). A hydrostatic strain has been applied over the range -10% 

o + 10%, keeping the c/a ratio to 1.6 for all simulations. Note 

hat negative pressures correspond to negative strains (compres- 

ive), and positive pressures correspond to positive strains (ten- 

ile). While using such a small supercell could lead to errors in 

he solution energies calculated due to the elastic interactions be- 

ween the periodic images, the energy difference between H being 

n the octahedral and tetrahedral interstitial sites is only slightly 

ffected (about 5 meV) [26] . Similarly, fixing the c/a ratio does af- 

ect the results (pure Zr under compression has a c/a ratio closer to 

deal [27] ), however the variation of c/a ratio with pressure is not 

ecessarily the same for all models considered, and constant pres- 

ure calculations were not implemented in PLATO. While the lat- 

er issue could have been easily remedied, it was better to reduce 

he number of variables that affect the final results. Other systems, 

amely zirconium hydrides (ZrH and ZrH 2 ) were also briefly con- 

idered, with unit cells containing 4 Zr atoms and 4 and 8 H atoms 

n tetrahedral sites respectively. The k-point grid used here was 

 × 7 × 8 . 

. Results 

This section focuses on two key aspects of the predictions for 

nterstitial H, which are directly comparable in all models consid- 
3

red. First, the solution energy is considered, calculated as 

 sol = E Zr 36 H − E Zr 36 
− 1 / 2 E H 2 , (2) 

here E Zr 36 H 
, E Zr 36 

and E H 2 are total energies of the pure Zr super- 

ell, the same supercell with interstitial H, and a hydrogen dimer 

espectively. This calculation is problematic for empirical poten- 

ials because the two EAM potentials are not fitted to give rea- 

onable results for a H dimer in vacuum, and therefore predict an 

ncorrect energy or bond length for this dimer. Therefore, we have 

et E H 2 = −3 . 029 eV and E H 2 = −4 . 718 eV for Maxwell et al. and

MD19.2 potentials respectively, leading to an agreement of solu- 

ion energies with plane-wave DFT results at zero strain. While this 

ntroduces a shift to the solution energy, this shift is the same for 

ll calculated solution energies for a given empirical potential. 

Second, the atomic structure was also compared. This compari- 

on was achieved by calculating the bond lengths between H and 

ts nearest neighbour Zr atoms. In the case of an octahedral site, 

ll 6 of the nearest neighbours are symmetry equivalent. For the 

etrahedral site, there are three equivalent bonds between H and 

r atoms which are all in the same basal plane, and one bond in 

he direction of the c-axis. 

.1. Strains around the dislocation core 

To determine the strains around the dislocation core we created 

 cylinder of Zr with the dislocation running through it along the 

irection of the axis. Periodic boundaries were applied along the 

irection of the axis, with free boundaries applied in the other di- 

ections. We used the MA#3 potential to describe the interaction 

etween the Zr atoms. 

The environments of several types of straight dislocation lines 

ere analysed using the OVITO software and principal and devi- 

toric strains of up to about 5% were found near the dislocation 

ine (this only includes the atoms identified as belonging to an 

CP structure, not atoms in the core). The results for a 〈 c〉 type

islocation with an extrinsic stacking fault are shown in Fig. 1 , and 

re representative of strains around both 〈 c〉 and 〈 a 〉 type disloca-
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Fig. 2. Solution energy for H under hydrostatic pressure calculated using EAM potentials, with plane-wave DFT results included as a reference. For all methods, the lattice 

constants were strained between 90 and 110% of their equilibrium value, except for the Maxwell et al. potential, for which calculations with strain above 107% did not 

converge. More detail around low pressures is shown on the right. The symbol �E corresponds to the difference in solution energy between H in the octahedral site and in 

the tetrahedral site. 
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n

ions; significant hydrostatic strains were not present around screw 

islocations. Results from Fig. 1 are in agreement with the strains 

round dislocation loops in Fe [28] . While the hydrostatic strains 

pplied in this work are not directly representative of the defor- 

ation around loops, notably with no shear or uni-axial strain be- 

ng modelled, it is unlikely that a model would perform better for 

hese more complicated strain environments than for the hydro- 

tatic strain case alone. 

.2. Performance of empirical potentials 

The empirical potentials considered here were specifically se- 

ected because at zero pressure, they predict the tetrahedral site 

o be lower in energy than the octahedral one, with a difference 

f 0.092 eV for Maxwell et al. [7] and 0.039 eV for the BMD19.2

otential [5] , compared to 0.061 eV from plane-wave DFT [1] . Note 

hat the DFT value varies slightly between different sources, but 

s always between 0.04 eV and 0.08 eV [1,29–31] . Because of the 

maller supercell used here, the difference in solution energies cal- 

ulated vary slightly, and were 0.084, 0.040 and 0.053 eV using the 

axwell et al. potential, BMD19.2 potential and plane-wave DFT 

this work) respectively. The error is much smaller than the energy 

hanges with strain, so the small supercell will have a negligible 

ffect. 

As shown by Fig. 2 , applying tensile hydrostatic strain to the 

upercell leads to a lowering of the solution energy, with H in the 

ctahedral site being more sensitive to this strain. Under compres- 

ive stress larger than ∼1 GPa the octahedral site becomes more 

nergetically favourable. However, the rate of change of the solu- 

ion energy with pressure varies considerably between the differ- 

nt methods. The slope is much steeper for the Maxwell et al. po- 

ential than the reference DFT results. The BMD19.2 potential has 

 more similar slope to DFT, but varies depending on the pressure 

nd even becomes positive for an octahedral site in tension. The 

ange of pressures for which the empirical potentials produce re- 

iable results is also limited; however the pressures explored here, 

orresponding to the lattice constant varying from 90% to 110% of 

heir equilibrium values, are rather extreme even on a local, atom- 

stic scale. We also note that the near linear variation of energy 

ith strain seen for the plane-wave DFT results suggests linear 

lasticity might be an appropriate method to estimate the inter- 

ction energy between the H interstitials and the strain field. 
4

Comparing the Zr-H bond lengths computed using different 

ethods ( Fig. 3 ) exposes the shortcomings of these potentials to 

epresent H in solution under hydrostatic strain. The octahedral 

ite is represented reasonably well by both potentials, but the 

onds are shorter (for both potentials) and the gradient changes 

ore steeply with pressure (for the BMD19.2 potential) compared 

o DFT. Additionally, the tetrahedral site geometry is poorly de- 

cribed by both potentials. The potential developed by Maxwell 

t al. predicts c-axis bonds to be shorter than the basal ones, 

n disagreement with DFT. For the BMD19.2 potential, the bond 

ength variation would suggest that at high compressive pressures, 

he bond length actually increases: this might actually be the H 

tom attempting to migrate to a different site, but this behaviour 

s not observed in DFT calculations. Even at near equilibrium pres- 

ures, the bond lengths of the tetrahedral hydrogen are smaller, 

ore different from each other and vary more with pressure than 

he DFT results. Therefore, even though the energy differences be- 

ween the two interstitial sites at equilibrium matches DFT quite 

ell, the geometries do not. 

The empirical potentials are therefore not very good at rep- 

esenting H in Zr under hydrostatic strain, and become less reli- 

ble further from equilibrium. This is likely to affect the behaviour 

hat these potentials predict for H in the strain field of dislocation 

oops. In particular, the drive to areas of tensile strain is too large 

or both empirical potentials. 

.3. Basis set selection 

Just as for the zirconium model discussed in our previous work 

10] , when finding a suitable basis set, a sensible starting point is 

tarting with a small basis set, in this case only containing a 1s 

rbital. We then generate basis sets with varying cutoff radii and 

ompare how they predict properties for these structures. Two ap- 

roaches have been explored in this work, differing in the struc- 

ures they used. Since they are complementary, we present them 

oth here. 

.3.1. Hydride densities of states 

While we are mainly interested in H in solution in HCP Zr in 

his paper, the work presented here originated in an effort to de- 

ign a model capable of representing both H in solution and zirco- 

ium hydrides. Therefore, it made sense to use a stochiometric hy- 
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Fig. 3. The length of Zr-H nearest neighbour bonds for H under hydrostatic pressure calculated using EAM potentials, with plane-wave results included as a reference. For 

more details, see Fig. 2 . 

Fig. 4. Electronic density of state for ZrH (left) and ZrH 2 (right), predicted using a 1s basis set with different confinement radii with the Kohn-Sham functional (top) and the 

Harris-Foulkes functional (bottom). 
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ride as a reference structure (ZrH in the ε structure in this case), 

nd compare the equilibrium volume and density of states with a 

FT calculation. 

When comparing the densities of states of Fig. 4 for different 

asis sets, the main change is in the position of the states be- 

ow the band gap located 3 eV below the Fermi energy when the 
5 
arris-Foulkes functional is used. These states shift to higher en- 

rgies for shorter-ranged basis sets, and lower energies for longer- 

anged ones. When a Kohn-Sham functional is used, the confine- 

ent radius hardly affects the density of states - self-consistency 

dds some robustness to the model and makes it less reliant on the 

hoice of r 0 . The best agreement with plane-wave DFT (the lowest 
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Fig. 5. Total energy variation with hydrostatic strain from equilibrium (as predicted by plane-wave calculations) for ZrH (left) and ZrH 2 (right), predicted using a 1s basis set 

with different confinement radii and with and without self-consistency. 

Fig. 6. Electronic density of state for interstitial H atom in octahedral (O) or tetrahedral (T) site, predicted using different basis sets, all using r 0 = 3.0 a 0 and different levels 

of theory. 
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nergy near equilibrium) is found with the confinement radius of 

 0 = 3 . 0 a 0 . This basis set also predicts an equilibrium volume close

o the DFT value ( Fig. 5 ) both with and without self-consistency. 

The sensitivity of the self-consistent calculations to r 0 proves 

hat the consideration of both structural and electronic properties 

s important, and only the former is sensitive to the choice of r 0 
hen self-consistency is included (at least in the case of ZrH). 

he error in the energy is second-order in the error in electron 

ensity, while the density of states is first order. Hence using a 

etter approximation to the real electron density (resulting from 

he Kohn-Sham functional) instead of only a first order correction 

o atomic densities (Harris-Foulkes functional) affects the density 

f states more than the minimum energy configurations. Reassur- 

ngly, for r 0 = 3 . 0 a 0 , the densities of states with and without self-

onsistency are in good agreement, further supporting the choice 

f this confinement radius. 

In the next step, it is important to consider the transferabil- 

ty of this basis set to other structures. Here, we take another sto- 

hiometric hydride, ZrH 2 in the γ structure, and the hcp-Zr struc- 

ures with an interstitial H atom. As can be seen in Figs. 4 and 5 ,

he agreement of the densities of states and equilibrium volume 

s very good for ZrH 2 . However, the results do not look as good

or the interstitial H ( Fig. 6 ), where the H peaks in the density of

tates do not compare well to the plane-wave DFT results (mainly 

n the case without self-consistency), and the predicted solution 

nergies have the wrong ordering Fig. 7 . This suggests that H in 

olution is quite different from hydrides: for example, the electron 

loud could be more or less spread out from the core, or even not 
6 
ell represented by a spherical basis set. In any case, the struc- 

ures with interstitial H need to be used to choose a basis set that 

epresents them well. 

.3.2. Total energy of interstitial H 

The variation of total energy for H in the tetrahedral and oc- 

ahedral sites using the 1s basis set is shown in Fig. 7 . For the 1s

asis set, the tetrahedral H atom seems to be better represented 

y a slightly shorter ranged basis set. Interestingly, the basis set 

e previously picked for hydrides, i.e. a 1s orbital with r 0 = 3 . 0 a 0 ,

as a confinement radius in between 2 . 5 a 0 , which gives the lowest

otal energy for H in the tetrahedral site, and 3 . 75 a 0 for the octa-

edral site. More concerning, even for these two “ideal” basis sets, 

.e. r 0 = 2 . 5 a 0 for the tetrahedral H and r 0 = 3 . 75 a 0 for the octahe-

ral one, the total energy of the H in the octahedral site is lower 

han in the tetrahedral site, in disagreement with plane-wave DFT. 

he basis set functions could have the wrong shape, but this is 

ess easy to explore systematically, so an easier solution is to use a 

arger basis set. 

.3.3. Expanding the basis set 

To start, we have used a relatively large basis set ( 1s 1s ∗ 2s 2s ∗

p 2p ∗) to determine the best confinement radius. Just like in the 

revious section, we have plotted the total energy as a function of 

he confinement distance ( Fig. 7 ). All the total energies calculated 

or this basis set are significantly lower than for the 1s basis set, 

eaning that expanding the basis set does indeed lead to finding 

 state closer to the true ground state. For all radii considered, the 
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Fig. 7. The energy of adding H into a Zr cell is the difference in energy between the 

cell with Zr plus an H atom, and the cell with just Zr. In this figure the variation 

of this energy with the confinement potential radius for the H basis sets, for H in 

tetrahedral and octahedral sites, is presented. This directly corresponds to the total 

energy with a shift equal to the total energy of the bulk Zr supercell. The energy 

difference is defined as �E = E oct − E tet . 
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Fig. 8. Solution energy for H under hydrostatic pressure calculated using Kohn- 

Sham LCAO DFT, with plane-wave results included as a reference. The energy dif- 

ference is defined as �E = E oct − E tet . 
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otal energy of the configurations with tetrahedral H is lower than 

nes with octahedral H, with the difference being ∼0.06 eV for all 

 . 75 a 0 ≤ r 0 ≤ 3 . 0 a 0 . However, for both structures the total energy

eeps decreasing with increasing basis set range. While this could 

e due to a better representation of the electron density around H, 

t could also be caused by providing additional states for electron 

ensity around Zr. For the rest of this work, we have chosen the 

 0 = 4 . 0 a 0 , as the predicted difference in energy is reasonable, the

hort range improves computational efficiency and it also agrees 

ith confinement of the 1s only basis set considered in the previ- 

us section. 

The density of states predicted by the 1s 1s ∗ 2s 2s ∗ 2p 2p ∗ ba-

is set is much closer to plane-wave DFT predictions than using 

nly a 1s basis set ( Fig. 6 ). The variation of solution energy and

r-H bond lengths with pressure agree quite well with plane-wave 

FT results for both basis sets ( Fig. 8 ). In fact, while the 1s ba-

is set predicts the octahedral site to be lower in energy at 0 GPa, 

he ordering changes at 4 GPa (in tension). This does suggest that 

ven the small 1s basis is relatively good, but the energy differ- 

nce between the two sites is so small a more extensive basis set 

s needed. For both basis sets we also see that the calculated so- 

ution energy is significantly lower than desired. This could be for 

everal reasons, the most likely one being that this basis set, de- 

pite being quite flexible, optimised for H in Zr is not very good at 

epresenting a H dimer, predicting a higher total energy for it and 

herefore leading to low solution energy. Secondly, the Zr-H bond 

engths predicted from the LCAO basis sets are all slightly too short 

ompared to plane-wave DFT ( Fig. 9 ). This is actually caused by 

he pure Zr model, which predicts a slightly too small equilibrium 

olume for an hcp Zr cell, meaning that the pressure calculated 

or the same size bulk Zr supercell with plane-wave and LCAO DFT 

redicts higher pressure for the latter. In fact, when plotted against 

he strain, the agreement with plane-wave and our extended basis 

et is be much better. 

For the 1s 1s ∗ 2s 2s ∗ 2p 2p ∗ basis set Mulliken population anal- 

sis reveals very little filling of the 2p orbitals; the next step is 

herefore to try to reduce the basis set size. Using a confinement 

adius r 0 = 3 . 0 a 0 , we have generated a range of basis sets with

ifferent orbitals included, some of them split, and evaluated the 
7 
redicted solution energy difference between the two sites: these 

re listed in Table 1 . Unsurprisingly, the total energies for the in- 

ermediate basis sets are in between the values for the two lim- 

ting basis sets. While splitting the 1s orbitals into a double- ζ is 

ot sufficient, adding a 2s or a 2p orbital results in the tetrahedral 

ite being more stable, with the addition of a 2s orbital resulting 

n a larger difference between the two sites. However, the small- 

st basis set predicting an energy difference comparable to that 

rom plane-wave DFT calculations contains 1s 1s ∗ 2s 2s ∗ orbitals. 

herefore, while adding the flexibility to the radial part of the ba- 

is set is important for this problem, the angular dependency is 

ot needed. 

The remaining question is why this radial flexibility is needed. 

s the local electron density very different between H in the tetra- 

edral and octahedral sites, or are both of them quite similar, but 

ery different from the “squeezed free atom” simplification at the 

oot of building our basis set? In order to answer this, we have 

artitioned the energy density to obtain the density around each 

tom. 

The partition function for site i is defined as 

 i ( � r ) = 

ρ(0) 
i 

(| � r − �
 R i | ) ∑ 

j ρ
(0) 
j 

(| � r − �
 R j | ) 

(3) 

ith ρ(0) 
i 

being the atomic electron density distribution for the 

onfined atom i (i.e. an atom with one filled state corresponding 

o the 1s orbital for H), and 

�
 R i is the position of atom i . The parti-

ioned atomic density for atom i is then: 

i ( � r ) = w i ( � r ) ρ( � r ) . (4) 

here ρ( � r ) is the electron density of the entire system. Note that 
 

i w i ( � r ) = 1 so that 
∑ 

i ρi ( � r ) = ρ( � r ) . 

The atomic density assigned to each atom can then be further 

ecomposed into its spherical harmonic components: 

ilm 

(r) = 

∫ 
ρi ( � r ) Y ∗lm 

( ̂ r ) d ̂ r (5) 

here Y lm 

are spherical harmonics and the integral is performed 

ver the unit circle centred on atom i for a range of radii up to the

utoff of ρi (r) . Note that this atomic electron density as defined 

ere can have components corresponding to higher l values than 

he angular momentum quantum numbers of the basis set compo- 
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Fig. 9. Zr-H nearest neighbour bond length for H in octaherdal or tetrahedral interstitial sites under hydrostatic pressure calculated using Kohn-Sham LCAO DFT, with 

plane-wave results included as a reference. 

Table 1 

The change in solution energy based on the orbitals included in the hydrogen basis set in unstrained structures. Negative differ- 

ence in solution energy indicates that octahedral site is more stable than tetrahedral one. 

Basis set Tetrahedral H total energy (eV) Octahedral H total energy (eV) Difference in total energies (eV) 

1s -3009.51 -3009.57 -0.054 

1s 1s ∗ -3009.59 -3009.59 0.000 

1s 1s ∗ 2p -3009.65 -3009.64 0.002 

1s 1s ∗ 2p 2p ∗ -3009.67 -3009.66 0.013 

1s 1s ∗ 2s -3009.63 -3009.61 0.020 

1s 1s ∗ 2s 2p -3009.68 -3009.66 0.021 

1s 2s -3009.61 -3009.58 0.030 

1s 1s ∗ 2s 2s ∗ -3009.66 -3009.61 0.045 

1s 1s ∗ 2s 2s ∗ 2p -3009.71 -3009.66 0.045 

1s 1s ∗ 2s 2s ∗ 2p 2p ∗ -3009.74 -3009.68 0.060 

Fig. 10. Spherically symmetric part of the partitioned electron density belonging 

to H atom in interstitial sites. The bottom plot shows the difference between the 

electron densities compared to a reference of tetrahedral site at equilibrium. 
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ents, but should nevertheless provide a good comparison tool for 

he electron density around H atoms in different sites. 

Figures 10 and 11 show the comparison of the projected elec- 

ron density for l = 0 and l = 1 , m = 0 , 1 , 2 for H in the two sites,

s well as the difference between the two. The angular variation, 

aptured by the latter term, is larger for the tetrahedral site than 

he octahedral site, as expected from the shape of the site, how- 
8 
ver it is essentially negligible for both sites. The radial part ap- 

ears quite similar, though the electron density of the tetrahedral 

ite is larger in the centre, while the octahedral site has more den- 

ity further from the centre. Similar trends can be seen for these 

tructures under strain. They are both much more different from 

he squeezed 1s orbital than from each other. 

.4. Further approximations 

One of the original aims of this work was to create a faster 

odel, capable of modelling a larger number of atoms than tra- 

itional plane-wave DFT. We have already shown that the LCAO 

pproximation performs relatively well, and while the PLATO im- 

lementation is oriented more towards detailed analysis than 

omputational efficiency, it could be used in software such as 

P2K, which are more computationally efficient. PLATO also al- 

ows us to explore the possibility of further approximations in the 

hysics. These further simplifications have a potential to signifi- 

antly shorten the computational time, but they must not remove 

ny essential physics from the Zr-H model. 

We focus on two areas of simplification: the removal of elec- 

ronic self-consistency and the removal of many-centre interac- 

ions. The importance of these should be useful for the creation 

f better empirical surrogate models. 

.4.1. Harris-Foulkes functional 

In order to remove self-consistency we have used the Harris- 

oulkes functional instead of the Kohn-Sham functional, and again 

alculated the solution energies and densities of states for the zero 
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Fig. 11. Non-spherically symmetric parts of the partitioned electron density belonging to H atom in interstitial sites. 
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ressure case. Since atomic relaxation was not currently imple- 

ented in the software, we have used atomic configurations calcu- 

ated from plane-wave calculations. Without self-consistency and 

sing the 1s basis set, H in the tetrahedral has a higher solution 

nergy than in the octahedral site, by 0.106 eV. For the 1s 1s ∗ 2s

s ∗ 2p 2p ∗ basis set, the solution energy ordering is correct, but 

he difference of 0.032 eV is slightly less than the self-consistent 

alue. In both cases, the density of states is a much worse fit to 

he plane-wave density, with the two H peaks being further apart 

nd ordered differently than in plane-wave calculations ( Fig. 6 ). 

herefore, electronic transfer is important for the H-Zr interaction. 

his agrees with the intuitive picture expected from comparing 

lectronegativity of H (2.1) and Zr (1.3), predicting the H to be 

omewhat negatively charged. The sensitivity to the choice of ba- 

is set provides good evidence that the on-site electronic transfer 

etween different orbitals is very important, as the density is very 

ifferent from a free or confined atom and varies with strain. For 

irconium hydrides, the story is similar to H in solution in HCP Zr. 

tructural properties such as the equilibrium volume are in good 

greement with self-consistent results ( Fig. 5 ), while the electronic 

ensity is more affected and more dependent on the chosen con- 

nement radius ( Fig. 4 ). 

.4.2. 2-Centre approximation 

In previous work [10] , we have already shown that there are 

roblems with the 2-centre approximation when looking at self- 

nterstitial atoms. Due to the current efforts of several research 

roups around the world to create 2-centre tight binding models 

or metals which include interstitial elements such as H, we have 

xplored the importance of many-centre effects (and therefore the 

uitability of 2-centre tight binding) for modelling of H in Zr, and 
9 
e believe that the results will be qualitatively similar for other 

etals. 

The inverse Slater-Koster method described in our earlier work 

10] has been used to find effective 2-centre hopping integrals cal- 

ulated from a many-centre LCAO DFT Hamiltonian matrix. This 

rojection was done independently for pairs of atoms. For H in so- 

ution, Fig. 12 shows a significantly larger magnitude of hopping 

ntegrals for some Zr-Zr bonds: these correspond to bonds between 

r atoms neighbouring the H atom (highlighted in grey) and to 

onds going directly through the H in an octahedral site (high- 

ighted in pink). So, even the presence of a small H atom adds sig- 

ificant many-centre contributions to all hopping integrals of the 

urrounding metal. This effect is the largest for the orbitals that 

xtend furthest from the core. 

This many-centre effect is even more significant when we con- 

ider the hydrides. Here, the real many-centre nature of the hop- 

ing integrals becomes apparent for H-H bonds too. As can be seen 

n Fig. 13 , while 2 H atoms in next-nearest neighbour positions 

ave almost negligible hopping integrals when there is no atom 

irectly in between them, the presence of the Zr atom half way 

etween them makes their interaction comparable to the nearest 

eighbour ones. This analysis only includes 1s - 1s σ hopping inte- 

rals, which are closest to the core, and would be bigger for more 

xtended orbitals. Two centre tight binding models are therefore 

ven less suitable to model hydrides than they are for H in dilute 

olution, even if we only want to model hydrides. 

. Discussion 

The first takeaway from the results presented is that neither of 

he current state-of-the-art EAM potentials provides a sufficiently 

ccurate description of the behaviour of H in strained bulk Zr to 
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Fig. 12. The projected 2-centre hopping integrals for Zr-Zr bonds in equilibrium HCP structures with an interstitial H atom. The shaded areas correspond to the bond lengths 

for Zr atoms directly neighbouring the H atom (gray) and bonds going directly through the H atom (pink, in the case of H in the octahedral site). 

Fig. 13. The H-H ssσ hopping integrals in zirconium hydrides. The two-centre hop- 

ping integral from a dimer (solid line) compared the effective ones for the ZrH (cir- 

cles) and ZrH 2 (squares) for a range of uniform strains. The inset shows a ZrH crys- 

tal, with the two types of bond of length in the range 3.5 to 4.3 Å highlighted; the 

ones without a Zr atom in the middle (1) are well approximated by the dimer while 

the ones with it (2) are significantly different. 
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odel the distribution of hydrogen in the environment of dislo- 

ations, where large atomistic strains and gradients are present. 

n particular, the variation of the solution energy with respect to 

ressure is not in full quantitative agreement with ab initio cal- 

ulations, meaning that diffusion in environments with a gradient 

n strain field would likely not be well represented. For instance, 

he energy gained from moving from a non-deformed area (un- 

trained) to an area with 5% hydrostatic strain (representative of a 

rystal in proximity to a dislocation) is 0.32 eV from the DFT cal- 

ulations, compared to 1.13 eV from Maxwell et al. The BMD19.2 

otential agrees with the DFT calculation, predicting 0.31 eV, how- 
10 
ver shows much poorer agreement for the octahedal site, which 

s part of the diffusion pathway for H in Zr, and in areas of com-

ression where H would be depleted. One of the aims of develop- 

ng EAM potentials is their ability to model large systems, such as 

he environment of a dislocation loop, and run molecular dynam- 

cs simulations for these systems as presented, for instance, in the 

aper introducing the BMD19 potential [5] . As the environment of 

 dislocation loop is strained, with both shear and normal strains 

resent, the accuracy of the results needs further investigation. 

In this work, the strains considered were more than double 

hose we found in the dislocation environment, so the failure of 

he EAM potentials in high pressure conditions shown is unlikely 

o be as important as it would initially appear. When deciding on 

he suitability of a potential for studying H in Zr, especially if it 

s intended to be used for modelling dislocation loops, we believe 

hat the solution energy of H in strained lattices should be an 

mportant factor to consider when performing the fitting. This is 

aramount when modelling hydrogen diffusion in deformed envi- 

onments. Related to the strain energy associated with H in Zr is 

he elastic dipole tensor. This is relevant to the diffusion of H in an 

lastic field and should also be included. 

The observations made about the bonding of H in Zr should be 

elpful for the creation of simplified models in general, not just 

AM. We have shown the importance of electronic self-consistency, 

nd transfer of electronic charge to H atoms. Since a different 

mount of charge is transferred depending on the site the H atom 

s in, it should probably be modelled explicitly. The charge trans- 

er from Zr to H is likely to be a reason behind the ground state

f H being in the tetrahedral interstitial site despite this site being 

maller than the octahedral site. We find that H in a tetrahedral 

ite attracts more charge, probably due to the closeness of the Zr 

toms: the larger the charge is, the more it is concentrated near 

he core of the H atom. 

The charge transfer also varies with strain, with the H charge 

ncreasing with increasing compressive strain. While in the cases 
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Fig. 14. Spherically symmetric part of the partitioned electron density belonging to 

H in zirconium hydrides compared to H in interstitial sites in HCP Zr. 
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e considered here the charge remains relatively spherical, this 

ould likely change for shear strains or H in a vacancy, as the 

nvironment becomes less symmetric. However, the shear strains 

re unlikely to have a large influence on the solution energy as H 

s generally only considered to be attracted to areas of hydrostatic 

ension. 

Despite hydrides initially appearing to have a different structure 

o an interstitial H in Zr, the bonding between H and Zr is actually 

ery similar to H in a tetrahedral site in a HPC structure, as can be

een in Fig. 14 . In fact, H sits in tetrahedral sites in an FCT struc-

ure in hydrides, so the similarity is not entirely surprising. The 

 atoms in the hydride are also largely screened from each other, 

nd even for ZrH 2 , the charge around the dilute H atoms is only

lightly smaller than H in a tetrahedtal site in HCP Zr. 

It should also be noted that while there is always a charge 

ransfer to H from the surrounding Zr atoms, this is at most 0.2 e .

hile the definition of a charge is very sensitive to the choice of 

asis set and functional, and quantifying the charge transfer from 

FT can be problematic, the relative values should still be compa- 

able. When we started this work, we assumed that H was in an 

 

− state, and the peak in the density of states of H in solution cor-

esponds to two states. However, while there are indeed two states 

vailable in the peak, they are split between the H atom and the 

eighbouring Zr atoms. 

. Conclusion 

This work examined the bonding of H under hydrostatic strain 

ange of ±10% and has found that current state-of-the-art EAM po- 

entials are not yet able to represent these interactions sufficiently 

ccurately for simulations of hydrogen in strained environments, 

uch as those found around dislocations, despite providing an ac- 

urate description in unstrained Zr. We attribute this to the lack 

f explicit charge transfer in these models, and thus the lowering 

f the H interstitial formation energy in a tetrahedral site must be 

chieved by adjusting other parameters, which might create non- 

hysical results. 

By using different atom-centered basis sets for H in DFT cal- 

ulations, we have found that to accurately represent H in differ- 

nt interstitial sites as well as in hydrides, a basis set with suf- 

cient radial flexibility is needed. The shape of the electron den- 

ity is quite different to that for a free H atom, which is more 

ong-ranged. However, at least for the hydrostatic strains consid- 
11
red here, any non-radial components of the electron density are 

egligible. 
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