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Density functional theory study of the magnetic moment of solute Mn in bcc Fe
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An unexplained discrepancy exists between the experimentally measured and theoretically calculated magnetic
moments of Mn in α-Fe. In this study, we use density functional theory to suggest that this discrepancy is likely
due to the local strain environment of a Mn atom in the Fe structure. The ferromagnetic coupling, found by
experiment, was shown to be metastable and could be stabilized by a 2% hydrostatic compressive strain. The
effects of Mn concentration, vacancies, and interstitial defects on the magnetic moment of Mn are also discussed.
It was found that the ground-state, antiferromagnetic (AFM) coupling of Mn to Fe requires long-range tensile
relaxations of the neighboring atoms along 〈111〉 which is hindered in the presence of other Mn atoms. Vacancies
and Fe interstitial defects stabilize the AFM coupling but are not expected to have a large effect on the average
measured magnetic moment.
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I. INTRODUCTION

Steels are ubiquitous in technological applications due to
the abundance and low cost of Fe and its highly desirable
mechanical and corrosion properties with alloying additions.
Manganese is second only to C in its importance and use in
steels. Historically, Mn has been included as both a minor and
major alloying addition—the former to increase workability by
suppressing FeS formation and the latter to increase ductility,
through twinning induced plasticity, in the fairly recently de-
veloped, so-called TWIP steels. The state-of-the art theoretical
description of Mn in Fe has a large impact on our understanding
of phenomena such as solute clustering [1] and vacancy-solute
clustering [2], which compromise the structural integrity of the
steels during operation. The former occurs in the ferritic phase
of duplex steels as a result of thermal aging (573–773 K for
>1000 h) [3–5] and in low-alloy steels [6–8] resulting from
long-term (>1 year) elevated temperature (∼550 K); the latter
occurs due to neutron irradiation damage, which is of interest
to life extension of nuclear fission reactors and for fast neutron
damage of steels to be used in future fusion reactors. It is
therefore important for atomic scale processes such as binding,
substitution, and migration to be understood at a fundamental
level, to be used in high-order methods and analyses [9–13] to
model these phenomena in industrial settings.

Mn has long been regarded as one of the most troublesome
transition metals in terms of predicting its magnetic behavior
and electronic interaction with other elements [14]. In its
elemental ground state, it adopts a 58-atom cubic unit cell of
space group I 4̄3m, and exhibits a noncollinear (NC) magnetic
structure, whereby atoms located in 2a, 8c, and two 24g sites
(in Wyckoff notation) exhibit different spin vectors [15,16].
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This magnetic structure undergoes a transition to paramagnetic
(PM) structure at the Néel temperature of ∼95 K [17]. In
contrast, Fe is one of the most well studied transition metals
[18–20]. In its ground state, Fe adopts a ferromagnetic (FM)
bcc structure [21], which it maintains until its Curie tempera-
ture at ∼1043 K [22].

With minor alloying additions of Mn to Fe the crystal
structure will remain bcc as a solid solution. The solubility
limit is reached at ∼3 at.% at ∼600 K [23], at equilibrium;
however, increased additions are reported to be stabilized using
cold working [24]. The magnetic structure of Fe-Mn alloys is
highly variable and is thought to be affected by many different
factors, namely, the Mn concentration [25], the local atomic
environment [26], lattice parameter [14], and temperature [24].
This behavior is observed to a much lesser extent for Fe-Cu,
Fe-Ni, and Fe-Si solid solutions [27]. It is therefore no surprise
that discrepancies exist between experimental observations
and theoretical frameworks. In the current study, we use density
functional theory (DFT) to study the effect of concentration,
local environment, strain, and point defects on the magnetic
moment and stability of Mn in α-Fe.

II. METHODOLOGY

A plane-wave density functional theory method was used,
as implemented in the Vienna Ab Initio Simulation Package
(VASP) [28]. The Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional [29], based on the generalized gradient
approximation (GGA), is used with the projector augmented
wave (PAW) method [30]. Pseudopotentials provided with the
VASP distribution were used, where 14 electrons (3p6 3d7 4s1)
for Fe and 13 electrons (3p6 3d5 4s2) for Mn are considered
as valence electrons.

The k points, energy cutoff, and lattice parameters of
the perfect lattice of both elements (α-Fe and α-Mn) were
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converged. It was determined that a real-space k-point density
of 0.03 Å−3 and energy cutoff of 500 eV provided accurate
results and was kept consistent for all calculations (resulting in
6×6×6, 4×4×4, and 2×2×2 k-point grids for the 54-, 128-,
and 250-atom supercells). Constant pressure and full relax-
ations with Methfessel-Paxton [31] smearing (with a width of
0.1 eV) were used to obtain the ground-state configurations.
The tetrahedron smearing method with Blöchl corrections [32]
was used on fixed dimension/volume calculations to generate
the electronic density of states (DOS). Spin polarization effects
were also included; noncollinear and collinear theory was
used for the α-Mn structure. The electronic and ionic energy
relaxation convergences were 10−6 and 10−4 eV, respectively,
for all calculations, and all forces on atoms were converged to
10−2 eV/Å between the last two steps of ionic relaxation.

Supercells of 54 (3×3×3), 128 (4×4×4), and 250 (5×5×5)
Fe atoms were relaxed at constant pressure. To understand the
behavior of a dilute concentration of Mn in the α-Fe lattice,
a single Mn was substituted for an Fe atom in each of the
supercell sizes. For higher concentrations of Mn and Mn-Mn
interactions within the Fe matrix, a Mn content of 4.69 at.%
was achieved by pseudorandomly selecting six lattice sites
for Mn atom substitution in the 128-atom supercell. As this
method is stochastic in nature, this was repeated to produce
20 unique supercells (120 Mn atoms in total) to achieve
a good statistical understanding of the system. Cohesive,
binding, substitutional, vacancy, and interstitial formation en-
ergies were calculated following standard procedures, outlined
in the Appendix.

Linear elastic theory, as implemented within the ANETO

framework [33] for calculating the dipole tensor using the
strain method [34,35], was used to calculate the relaxation
volume and interaction energies for Mn in bcc (α) Fe in the
54-, 128-, and 250-atom supercells.

III. RESULTS AND DISCUSSION

A. Pure Mn and Fe

Table I reports the calculated values of cohesive enthalpies
(Ec) and lattice parameters (a0), presented for the ground-state
(α), cubic (β), fcc (γ ), and bcc (δ) Mn structures. Values for
α-Fe are also provided, together with past literature values for
Mn and Fe structures for comparison. The following magnetic
structures within α-Mn were considered: Nonmagnetic (NM),
collinear, antiferromagnetic (AFM), and NC AFM.

In accordance with past literature, and the observed equilib-
rium behavior of pure Mn, the α-Mn phase is the most energet-
ically favorable at 0 K [42]. This is then followed by the β, γ ,
and δ phases, which are temperature stabilized. The different
known magnetic arrangements of α-Mn were simulated; in
the NC case, the lowest-energy structure displayed a similar
magnetic configuration to the collinear AFM case as found in
past literature [14,16]. The difference in Ec and a0 between
the NC AFM and collinear AFM α-Mn structures is attributed
to the spin-orbit interaction [43,44], i.e., the relativistic effect
of the magnetization direction to the crystal lattice [45], which
was considered in the NC calculation. The magnetic moments
of each atomic site can be found in Table III (Appendix).
The overestimation of the cohesive enthalpies compared to

TABLE I. Cohesive energy (Ec) and lattice parameter (a0) of
structural and magnetic allotropes of pure Mn and α-Fe.

Crystal Magnetic Ec (eV/atom) a0 (Å)

structure structure Current Literature Current Literature

α-Mn NC AFM 3.87 8.61 8.61a, 8.91b

AFM 3.86 8.64
NM 3.82 8.56

β-Mn AFM 3.79 6.32 6.32c

γ -Mn NM 3.76 3.73d, 2.92e 3.50 3.49f

δ-Mn FM 3.69 2.79 2.78g

α-Fe FM 4.88 4.78d, 4.28e 2.83 2.86e

aReference [14], theoretical.
bReference [40], experimental.
cReference [41], experimental.
dReference [36], theoretical.
eReference [39], experimental.
fReference [37], theoretical.
gReference [38], theoretical.

the experimental values is due to the approximation of the
exchange-correlation functional [36,46].

B. Mn in α-Fe

1. Magnetic moment and stability

After gaining confidence in the theoretical representation
of pure Fe and Mn, we move to the case in which a single Mn
solute atom is placed in the α-Fe matrix. The substitutional
energy (Esub) provides an indication of the stability of Mn in
the bcc FM Fe lattice. This value should converge with system
size. Past literature has utilized 54- and 128-atom supercells
where it was concluded that a convergence of ±0.05 eV was
achieved with the 128-atom supercell [47]. However, there
is little agreement between the magnetic moment of Mn and
substitutional energy among theoretical reports in the literature
[27,47]. In the publication by Olsson et al. [27], it was shown
that the substitutional energy can vary ±0.3 eV between
the ultrasoft pseudopotential (USPP) [48] and PAW methods
and that there is a large discrepancy between the magnetic
moments. This was attributed to the inability of the USPP
method to correctly represent the semicore d electrons. In
this section we investigate the effect of the magnetic moment
of Mn on Esub. It is known that the magnetic moment of
Mn is particularly difficult to converge in α-Fe as a shallow
energy landscape exists between local FM and AFM states [49]
(where all magnetic states are henceforth described, locally, in
reference to the Fe matrix). Within this study it was found that
the AFM state of Mn is the ground state inα-Fe and that it is also
possible to model the FM state in 128- and 250-atom supercells,
provided a sufficiently high initial magnetic moment is set prior
to energy minimization; see Table II. The average magnetic
moment of Fe remained relatively consistent at 2.26(1) μB for
all calculations within this section.

These results demonstrate that it is possible to converge to
both the FM and AFM state of Mn when its initial magnetic
moment is 4 or �2, respectively, for supercell sizes �128
atoms. The corresponding substitutional energies highlight
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TABLE II. Influence of initial spin on final spin state of Mn
(relative to Fe) and the corresponding substitutional energies (Esub).

Mn Initial Final Final
Supercell concentration spin Mn spin Mn spin state
dimensions (at.%) (μB) (μB) Mn Esub(eV)

3×3×3 1.85 −2.00 −1.89 AFM 0.20
0.00
2.00
4.00

4×4×4 0.78 −2.00 −1.98 AFM 0.19
0.00
2.00
4.00 0.54 FM 0.29

5×5×5 0.40 −2.00 −2.08 AFM 0.20
0.00
2.00
4.00 0.74 FM 0.25

the importance of the resultant magnetic moment of Mn to
its stability in the α-Fe matrix. When it is in the FM state
the Esub becomes less favorable by 0.10 and 0.05 eV for the
4×4×4 and 5×5×5 supercell, respectively. Since it is pre-
dicted that the AFM state is the more stable of the two, it
is recommended that it is used as the reference state for the
calculation of binding energy calculations.

When assessing the local density of states (LDOS) of Mn in
α-Fe, the FM and AFM spin states are distinct; see Fig. 1. The
difference in states is observed as the shift in the antibonding
peak of the majority spin channel, from above the Fermi level
for the AFM, to below the Fermi level in the FM magnetic
coupling of Mn. The occupation of the antibonding peak
explains the relative stability difference between the two states
[50].

2. Calculated vs experimental magnetic moment

In this section we compare the DFT calculated magnetic
moments in the current study to the past experimental studies
that used diffuse neutron scattering. For the former, the Mn
concentration was varied by using the three different supercell
sizes; 250, 128, and 54 atoms correspond to 0.40, 0.78, and
1.85 at.%, respectively. A higher concentration of 4.69 at.%
(above the expected solubility limit) was obtained by randomly
populating the 128-atom supercell with six Mn atoms, repeated
in 20 supercells; the average of all the magnetic moments was
taken and the standard error is plotted as error bars.

Figure 2 shows that there is little agreement among the
experimental data and that the ground-state theoretical values,
obtained in this work, overpredict the magnitude of the mag-
netic moment below 5 at.%. However, it should be emphasized
that the solubility of Mn in α-Fe is at maximum ∼3 at.% at
600 K [23]. In the studies that surpass this solubility, Nakai
and Kunitomi [24] reportedly stabilize the α phase by cold
working and the study by Radhakrishna and Livet [26] does
not provide such information. Formation of secondary phases
such as γ -(Mn,Fe) is likely to occur at equilibrium for Mn
concentrations >3 at.%. Nevertheless, the results in the current

-6 -4 -2 0 2 4
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FIG. 1. Local density of states of the d band of (a) FM and (b)
AFM spin coupling in α-Fe for a 128-atom supercell.

study are in better agreement with experimental findings for
Mn in excess concentrations.

In the following sections, the possible factors that lead to
the discrepancies between experiment and theoretical calcu-
lations and how these differences can be captured through a
mechanistic understanding of the Fe-Mn system are explored.

3. Atomic relaxations

By taking the difference between the atomic coordinates of
the relaxed and unrelaxed supercells, the vectors corresponding
to the atomic relaxations upon substitution of Fe with Mn can
be calculated. Figure 3 provides an illustrative representation
of the vectors (×100) in a 250-atom supercell. Although these
relaxations are small (∼10−2 Å) they are markedly different
between FM and AFM states. For the AFM relaxation, the first
nearest neighbor (1st nn) Fe was repelled by the Mn atom.
The repulsion propagated along 〈111〉 over relatively long
distances (∼10 Å), while Fe atoms along 〈100〉 and 〈201〉 from
the Mn experience a shorter-range attraction (∼5 Å). In the
FM case, only displacements of Fe towards Mn are observed
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FIG. 2. Magnetic moment of Mn in α-Fe as calculated using DFT
in the current study for AFM Mn (closed squares) and FM Mn (open
squares) compared to the experimental magnetic moments using
diffuse neutron scattering, as measured by Nakai and Kunitomi [24]
(colored triangles), Radhakrishna and Livet [26] (colored inverted
triangles), Kajzar and Parette [51] (colored hexagons), Child and
Cable [52] (colored circles), and Collins and Forsyth [53] (colored
diamonds) where the colors represent the temperature of the sample
upon measurement.

(compressive), with the largest magnitude of 1.3×10−2 Å in
the 1st nn Fe.

For the smaller supercells (54 and 128 atoms) the long-range
movement is more constrained and may explain the slight
variance in magnetic moment and absence of FM moment for
the 54-atom case. Figure 4 shows the elastic self-interaction
energy [54,55]. It can be seen that the supercells are well
converged by 128 atoms.

From linear elastic theory, the relaxation volumes of FM
and AFM Mn are calculated for the different supercell sizes;
see Fig. 5. The volume change due to the tensile relaxations
of the AFM Mn and compressive relaxations of the FM Mn
can be seen clearly. The effect of the FM Mn on the Fe lattice
is much more localized than the AFM, where the former has
self-interaction energies three orders of magnitude smaller than
the latter. These results suggest that the increased stability of

FIG. 3. Atomic relaxation vectors ×100 in compression (red) and
tension (green) of Fe atoms around a Mn substitution (purple) for the
AFM and FM magnetic moment of Mn in the 250-atom supercell.
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FIG. 4. Self-interaction energy of the substitutional Mn defect in
α-Fe when in the FM and AFM magnetic state.

the AFM state over the FM state of Mn is due to electronic
rather than elastic effects.

4. Mn concentration

The interaction between neighboring Mn species in α-Fe
is not well understood. Past theoretical studies that report the
binding energies between two Mn atoms are not in accord
[27,47,56]. Within this study, a stochastic behavior was found
in the resultant magnetic moments of the Mn. When two Mn
atoms were placed in the 54-, 128-, and 250-atom supercells,
in different nn positions, each adopted FM or AFM moments
with varying magnitudes and no clear trend (reported in Fig. 13
of the Appendix). The binding energies between the two Mn
atoms varied by ±0.05 eV between supercells and did not
correlate with their magnetic moment. Figure 6 reports the
binding energies calculated for the 250-atom supercell, and
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FIG. 5. Relaxation volume of the substitutional Mn defect in α-Fe
when in the FM and AFM magnetic state.
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FIG. 6. Mn-Mn nn binding energy for the 250-atom supercells
using the AFM (open square) and FM (closed square) reference state.
Comparison to the work of Olsson et al. [27] (green star) and Vincent
et al. [47] (blue cross) is included.

provides a comparison with past literature. The calculation of
the binding energy was done using the AFM and FM reference
state, which results in a significant difference (0.14 eV) in
energy.

When comparing to the work of Olsson et al. [27], the
average binding energies calculated from the FM Mn in the
α-Fe reference state are somewhat in agreement. However,
the FM state is metastable; therefore the AFM state should be
taken as reference. This offset does not explain the discrepancy
with respect to the work of Vincent et al. [47]. It is more likely
that the difference stems from the use of USPPs and other
theoretical parameters.

When considering the difference in atomic relaxations for
AFM and FM isolated Mn atoms, it is perhaps no surprise
that there is a large variation in magnetic moment between
nearest neighbor Mn with varying supercell size. If Mn does
indeed prefer to exhibit AFM behavior, then a more complex
atomic relaxation is required. However, at certain geometries
of nearest neighbor Mn, and without sufficient long-range
movement allowed, it will be more favorable for AFM and
FM Mn atoms to coexist.

A more concentrated system, in which six Mn atoms are
randomly distributed on a 128-atom bcc lattice replacing Fe,
corresponding to a Mn concentration of 4.69 at.%, is now
considered. Previous theoretical work on concentrated Fe-Mn
systems conclude that there is a uniform switch from the
AFM to FM moment in Mn between 2 and 3 at.% [57,58]. In
the current study, without sufficient statistical precision, this
conclusion could mistakenly be made; of the 20 supercells
studied, 15% displayed exclusively FM moments for Mn.
However, the magnetic moments of Mn within the other 85%
of the supercells were a mix of AFM and FM where the average
moments across all supercells range from −0.8 μB to 0.9 μB.
Figure 7 shows the distribution of the magnetic moments of
each Mn atom plotted against supercell energy. When taking
the average of all 120 Mn atoms simulated, the magnetic
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FIG. 7. Magnetic moment of each Mn atom (small dashes), across
the 20 supercells (gray shading), versus the enthalpy of formation per
unit (3Mn:51Fe). The average magnetic moment per supercell and
mean magnetic moment across all supercells is denoted by the large
dashes and dotted line, respectively.

moment equates to 0.06 μB (dotted line). The enthalpy of
formation (Eform) of the system displays a general trend
whereby the systems with lower average magnetic moment
(large dashes) are more energetically favorable. No correla-
tion was found (correlation coefficient = 0.013) between the
nearest neighbor species and the resultant magnetic moment
of Mn, which vary between −2.2 μB and 1.1 μB; see Fig. 14.

The environmental effect that is thought to influence the
magnetic moment of Mn [26] cannot be predicted by the
nearest neighbor species or concentration of Mn in α-Fe.
Further, the presence of other Mn species does not stabilize a
particular spin state. Rather, a more complex effect, likely due
to the relaxation vectors around each Mn, is observed, resulting
in an average moment close to zero (and median of ∼0.70 μB).
The interaction volumes used in diffuse neutron scattering
vary greatly with experimental parameters [59]; it is expected
that these volumes are of the μm length scale (although not
explicitly stated) in references from Sec. III B 2. Therefore,
the overall average magnetic moment is an important result
for comparison to the literature.

5. Effect of strain

In the past, it has been demonstrated that the lattice pa-
rameter of α-Mn has a large effect on its magnetic structure
[14]. To date this effect has not been investigated in the Fe-Mn
system; however, pioneering work by Cable and Tsunoda has
explored this effect in Ni- and Co-Mn alloys [60]. Two methods
of straining the environment around the Mn atom were used
in this study, both using 128-atom supercells: applying tension
and compression (1) hydrostatically and fixing the volume and
shape of the supercell while allowing internal relaxation of the
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FIG. 8. Magnetic moment of Mn (a) and difference in internal
energy of strained and ground-state supercell, �E, normalized by the
number of strained atoms (b) with a comparison between hydrostatic
strain (open squares) and local 1st nn strain (closed circles).

atoms, and (2) locally in the 1st nn Fe, fixing supercell shape
and atomic positions of atoms. The latter was performed to
investigate the influence of only the 1st nn.

At the dilute limit, the effect of strain on the magnetic
moment of Mn is clear; compression (negative strain) induces
the FM moment and tension induces the AFM moment; see
Fig. 8(a). The results from the hydrostatic method show a
transition from AFM to FM moment between 0% and −2%
strain. For the locally strained case, the transition occurs
at higher compressive strains and to a lesser degree. This
discrepancy is considered to be the result of the influence of the
neighboring atoms, other than the 1st nn, which remain fixed.
The difference in internal energy is calculated as

�E = Estrained − Egs

nd

, (1)

where Estrained and Egs are the total internal energy of the
strained and ground-state supercell, respectively, normalized
to the number of displaced atoms (nd ). The results follow
the expected parabolic distribution where deviation from the

ground-state configuration leads to less favorable energies
[Fig. 8(b)].

These results suggest that the disagreement between the
observed experimental magnetic moment of Mn is likely due
to the different conditions of the samples. Nonequilibrium
features such as increased defect concentrations and residual
stress, due to quenching or cold working, are expected to have
a large impact on the measured magnetic moment of Mn in Fe.
A lattice parameter change of 0.03 Å equates to a strain of 1%.
Experimentally, an increase in temperature of ∼250 K leads to
a lattice parameter increase of 0.01 Å for α-Fe [61]. However,
as the alloy approaches its Curie temperature a rapid drop in
net magnetic moment will occur [62]. Neglecting the phonon
interactions and other temperature effects, it may be possible to
observe both AFM and FM average moments in samples with
the same concentration of Mn, as seen by Child and Cable
[52] and Nakai and Kunitomi [24], providing the temperature
is varied sufficiently and is below the Curie temperature or
the sample is under sufficient strain. However, caution must
be used when making direct comparisons to experiment. This
is because the approximation of the exchange-correlation
functional used by DFT introduces discrepancies to both the
lattice parameter and the magnitude of the magnetic moment
[63]. Therefore, this result should be taken qualitatively and an
experimental relation between strain and magnetic moment is
required to establish a quantitative relationship.

6. Effect of vacancies

Vacancies are ubiquitous in crystalline systems and vary
in concentration depending on the condition and processing
of the sample [64]. Vacancy-solute clusters are a documented
phenomenon [65,66] and the binding of solute atoms to vacan-
cies in α-Fe is important for understanding solute partitioning,
diffusivity, and precipitation [67–69]. In Figs. 9(a)–9(c), the
resultant magnetic moment, binding energy, and vacancy
formation energy of Mn substitution are shown as a function
of distance from a vacancy from 1st to 6th nn.

The magnitudes and trend of the binding energies are in
accordance with past theoretical findings [27,47,70]. It is
predicted that it is favorable for Mn to bind to an Fe vacancy,
with a relatively long-range attraction compared to other 3d

transitional metals [27,71,72]. There is a clear stabilization of
the AFM moment of Mn when in the 1st nn position and the
binding energy between Mn and vacancy follows a similar
trend of the magnetic moment for all supercell sizes. This
behavior is different from many of the other transition metals,
which show little variance in magnetic moment with vacancy
position [27]. The vacancy formation enthalpies (Evac) follow
the same trends seen in the magnetic moment and binding
energies. Compared to pure Fe, there is a significant lowering
in Evac in the 1st and 2nd nn to the Mn. Again, it must be
emphasized that, when calculating the binding energy, the use
of the metastable FM Mn reference state in α-Fe leads to a
difference in binding energy of 0.06 eV (more favorable) to
the ground-state AFM reference state.

The nonlinear trend in binding energies is interesting,
especially because it is expected that the binding energy should
tend to zero with increasing distance. Here, it is found that
the Friedel-like perturbations of the Fe around the vacancy
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FIG. 9. (a) Mn local magnetic moment, (b) Mn-vac binding
energy, and (c) vacancy formation enthalpy in the α-Fe matrix for
1st to 6th nn for a 3×3×3 (blue square), 4×4×4 (red circle), and
5×5×5 (green triangle) dimension supercell; dashed lines with the
same colors in (c) represent the vacancy formation enthalpies of pure
Fe. (d) The volumes of the polyhedron created by the 1st and 2nd
nn around the Mn solute atom. When the Mn was in 1st and 2nd nn
proximity to the vacancy the polyhedron was extended to the 3rd nn
in that direction (pictorial representations). The equilibrium volume
for a single Mn in the α-Fe matrix is provided for reference (dashed
line).

FIG. 10. 〈110〉 interstitial dumbbell configuration in α-Fe. Labels
M (mixed), C (compressed), and T (tensile) denote the position of the
Mn substitution with respect to a dumbbell.

dominate over those around the Mn substitution. By assessing
the volume of the polyhedron created by the 1st and 2nd nn
around the Mn atom, a negative correlation to the binding
energies and magnetic moment is found; see Fig. 9(d). When
Mn is in the 1st and 2nd nn (to the vacancy) the polyhedron
is extended to the 3rd nn (from Mn) in the direction of the
absent site. These findings follow the trend identified within
this study; i.e., the FM moment is stabilized by compressive
and AFM by tensile lattice strain. At equilibrium, without
a vacancy, the 2nd nn polyhedron volume containing Mn is
calculated to be 45.60 Å3, which corresponds to the ground-
state magnetic moment of −2 μB. When only using 1st nn
polyhedron volumes no correlation was found.

From an applied perspective the equilibrium vacancy con-
centration is quite small in Fe � 10−6 below the melting
temperature [2,73]. However, when subject to displacive ra-
diation damage these concentrations can become nontrivial.
It is possible that the increased stability when Mn is under
local tensile strain, in the presence of a vacancy, is the basis
for solute-vacancy stabilization seen experimentally [2] or
hypothesized to occur due to nucleation of solutes from defects
in reactor pressure vessel steels [6].

7. Effect of the 〈110〉 Fe interstitial

Unlike the majority of bcc metals, the most stable self-
interstitial configuration in α-Fe is the 〈110〉 dumbbell [74].
Although Mn has been shown to also have a strong binding
to the 〈111〉 Fe dumbbell interstitial, it is expected that the
〈110〉 will be the most prevalent interstitial in α-Fe [27]. For
this reason, only the 〈110〉 orientation was considered with
Mn at three positions around the Fe interstitial: mixed (M),
compressive (C), and tensile (T); see Fig. 10. Within this study
these denotations are arbitrary; however, to remain consistent
to past literature where the names are given in reference to their
respective Voronoi polyhedra volumes [12], we continue their
use. From our current work, it is identified that the 2nd nn dis-
placement has a non-negligible effect on the magnetic moment
of Mn (Sec. III B 5); therefore a Voronoi analysis is not ex-
pected to correlate with the resultant magnetic moment of Mn.
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FIG. 11. (a) Mn local magnetic moment, (b) binding energy, and
(c) 〈110〉 interstitial formation enthalpy in the α-Fe matrix for T, M,
and C sites for a 3×3×3 (blue), 4×4×4 (red), and 5×5×5 (green)
dimension supercell; dashed lines with the same colors in (c) represent
the interstitial formation energies of pure Fe. (d) The volumes of
the polyhedron created by the 1st and 2nd nn around the Mn solute
atom.
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FIG. 12. Local density of states of the combined s, p, and d bands
of Mn in the (a) T, (b) M, and (c) C positions relative to a 〈110〉
dumbbell interstitial in α-Fe for the 128-atom supercells.

In agreement with past work, the binding energies between
Mn and an Fe 〈110〉 interstitial were favorable in all three sites;
see Fig. 11. A difference in binding energy between FM and
AFM Mn reference state was found to be 0.08 and 0.06 eV
for 4×4×4 and 5×5×5 supercells, respectively. Interestingly,
the relative magnetic moments do not follow the same trend
as seen with the vacancy defects. Analysis of the 2nd nn
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polyhedra volumes again displays a negative correlation with
the magnetic moments, as seen with the vacancies.

In the absence of Mn, the magnetic moment of the two Fe
atoms in the 〈110〉 dumbbell configuration exhibits a weak
AFM coupling to the matrix −0.27(2) μB. Further, the 1st
nn Fe atoms to the dumbbell display a significant deviation
in magnitude of their magnetic moment from the matrix.
The four Fe atoms in the geometrically equivalent C and T
sites yield magnetic moments of ∼1.72(7) and ∼2.42(1) μB,
respectively, which vary only slightly with Mn substitution.
It is likely that the introduction of a self-interstitial atom
sufficiently changes the atomic and magnetic structure so
that the magnitudes of the 2nd nn polyhedron volume vs
magnetic moment relationship, determined for the undefective
and vacated cases, no longer hold true. To quantify the
uncertainty due to the exchange-correlation functional, the
Armiento and Mattsson (AM05) implementation of the GGA
[75] was applied in the 54-atom supercells of Fe and with
additions of Fe and Mn 〈110〉 interstitial atoms. The difference
in magnetic moment and interstitial formation energy of Fe was
small (±0.17 μB and ±0.07 eV, respectively). Little difference
in the magnetic moments and binding energies was found for
Mn (±0.28 μB and ±0.16 eV, respectively). A larger difference
in Mn interstitial formation energy was calculated (±0.61 eV).
Again, it is emphasized that a qualitative message should
be taken from the analysis within this section; i.e., Mn will
adopt an AFM moment when in the area around the site of a
self-interstitial defect; further evidenced by their LDOS that
display characteristic patterns of an AFM Mn with unfilled
antibonding peaks; see Fig. 12.

IV. CONCLUSIONS

(1) The discrepancy in magnetic moment of Mn in α-Fe,
that exists between theory and experiment, is likely due to
susceptibility of the magnetic moment to change with strain.
Here, it was found that a hydrostatic compressive strain of
−2% (0.06 Å) stabilized the FM state of Mn atoms (relative to
Fe). Strains imposed by quenching, cold working, or thermal
expansion are expected to dominate over the effect due to Mn
concentration, vacancies, and Fe interstitial atoms. Therefore,
it is extremely important to provide experimental details
pertaining to the lattice parameter and sample conditions in
future assessment of the magnetic moment of Mn in Fe.

(2) In the dilute case, it is possible to simulate both FM
and AFM states of Mn, where the former is metastable, by
initializing the spin state on Mn to 4 and �2 μB, respectively.
The relaxations of the Fe atoms around the FM and AFM Mn
differ significantly. A long-range tensile relaxation in 〈111〉
and compression in 〈100〉 and 〈201〉 occur for the AFM case
and strictly compressive relaxations for the FM. The AFM state
is the ground state for dilute Mn defects in α-Fe and should be
used as a reference state to calculate the binding energies of
defect complexes in future work.

(3) At higher Mn concentrations, Mn exhibits AFM and
FM spin states in a stochastic manner with an average mo-
ment of ∼0.06 μB and median of ∼0.70 μB. By providing
a statistically significant dataset, we show that the previous
theory of a uniform switch from AFM to FM between 2 and
3 at.% Mn is an artefact of inadequate statistical sampling.

This randomness is likely due to a combination of shallow
energy landscape between AFM and FM spin states and the
inability for relaxations of the surrounding atoms to occur for
specific geometries and concentrations of Mn, as to allow for
exclusively one state to exist.

(4) A vacancy and 〈110〉 Fe interstitial were both found to
stabilize the AFM moment of Mn. The atomic relaxations due
to the defects dominate over those around the Mn substitution.
Polyhedron analysis of the atoms within the 2nd nn to Mn
show a negative correlation between volume and magnetic
moment with varying nn distance to the vacancy/interstitial.
This result suggests that the relationship between magnetic
moment and local strain still exists when in the presence of a
vacancy or interstitial.
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APPENDIX

1. Methods

a. Cohesive enthalpy

Reference energies of isolated Fe and Mn were obtained
by placing one atom of each element in separate supercells of
dimensions 12×13×14 Å. A non-self-consistent calculation at
the � point was performed without symmetry to determine the
anisotropic orbital occupancies of the free atom. The magnetic
moments for Fe and Mn were initialized as 4 and 4.4 μB,
respectively. The occupancies were found as follows:

Fe Mn
Spin-up channel: 3p3 3d5 4s1 Spin-up channel: 3p3 3d5 4s1

Spin-down channel: 3p3 3d1 4s1 Spin-down channel: 3p3 4s1

Subsequent self-consistent energy calculations were per-
formed until an electronic convergence of 10−6 eV was
achieved. The cohesive enthalpy was then calculated using the
following equation:

Ec = Ebulk − Efree, (A1)

where Ebulk and Efree are the internal energy per atom of the
element in its bulk and free state, respectively.

b. Formation, substitution, binding energy calculations

Calculations of the enthalpy of formation were performed
as follows:

Hform = EFe,Mn − (
nFeE

bulk
Fe + nMnE

bulk
Mn

)
, (A2)
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TABLE III. Magnetic moments of the allotropes of Mn.

Crystal Magnetic Spin vector

structure structure Site x y z

2a 0.00 0.00 2.90
8c 0.00 0.00 −2.17

NC 24g 0.00 0.00 0.45
α-Mn 24g′ 0.00 0.00 −0.13

2a 2.85
8c −2.3

AFM 24g 1.20
24g′ −0.01

β-Mn AFM 8c −0.12
12d 0.45

γ -Mn NM 4a

δ-Mn FM 2a 0.90
α-Fe FM 2a 2.20

where EFe,Mn is the internal energy of the Fe-Mn alloy and n

is the number of atoms of the respective element in the alloy.
The calculations for the substitution energies were done

using a similar method; however, nMn = 1. Therefore

Esub = EFe,Mn − (
nFeE

′bulk
Fe + Ebulk

Mn

)
, (A3)

FIG. 13. (a) Average magnetic moment and (b) binding energy
for Mn-Mn nearest neighbors in α-Fe.

FIG. 14. Magnetic moment of each Mn atom for different con-
figuration of the remaining five Mn atoms in supercell (located in
shells 1–4). Configurations ordered from closest cumulative distance
(“3-0-2-0” being three in the first shell, zero in the second, two in the
third, and zero in the fourth), to furthest (“0-0-4-1”: no Mn atoms in
the first two shells, four in the third, and one in the fourth).

where E′bulk
Fe is obtained from a supercell of consistent size and

dimensions as EFe,Mn.
The binding energies between two defects were calculated

as follows:

Ebind = (
ED1,D2 + nFeE

′bulk
Fe

) − (ED1 + ED2), (A4)

where ED1,D2 is the internal energy of the supercell containing
both defects D1 and D2, and ED1 and ED2 is the internal energy
of supercells (of consistent size and dimension with ED1,D2)
containing the respective defects.

c. Vacancy and interstitial formation enthalpy

In much the same method as calculating the substitution
energy, the vacancy formation enthalpy is calculated as

Evac = (
ED + Ebulk

Fe

) − EP , (A5)

where ED and EP are the defected and pristine supercells,
respectively.

The interstitial formation enthalpy calculation was done as
follows:

Evac = ED − (
EP + Ebulk

Fe

)
. (A6)

2. Results

When two Mn atoms were placed in 1st to 6th nearest
neighbor (nn) from each other in a 3×3×3, 4×4×4, and
5×5×5 dimension supercell a stochastic behavior was found in
the resultant magnetic moments of each Mn. Each adopted FM
or AFM moments with varying magnitudes with no clear trend.
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The average magnetic moment and binding energies between
the two Mn atoms are plotted in Fig. 13.

No correlation was found between spin on the Mn atom
and the location of the remaining five Mn atoms in the
cell, as illustrated in Fig. 14. Mn substitutions were found

to retain both FM and AFM ordering (with respect to Fe),
irrespective of the distance from other Mn atoms. However,
a general trend is observed whereby the spin on Mn atoms
decreases with increasing distance from neighboring Mn
atoms.
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