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Zirconium alloys are the most widely used nuclear fuel cladding materials for light water power reactors where1
irradiation damage causes solute redistribution, leading to degradation of alloy properties such as corrosion
resistance. Designing radiation-tolerant zirconium alloys requires a thorough understanding of the atomic-scale
transport behavior of the alloying elements in Zr. We perform density function theory calculations to investigate
the diffusion of Sn, Cr, Fe, Be, Al, and Ni in the HCP Zr matrix. We develop a methodology to accurately model2
the metastable vacancy states along the basal migration path, known to occur in group IV metals. We compute
the vacancy-mediated solute diffusion coefficients and drag ratios using the kinetic Monte Carlo method and an
analytic Green’s function method—the agreement between the two validates our methodology. The computed
diffusion coefficients of Sn and Al show good agreement with the experimental data and we expect these solutes
to diffuse via the vacancy-mediated mechanism. We use a Green’s function approach, parameterized with data
from density functional theory calculations, to compute the interstitial diffusion coefficients of Cr, Fe, Be, and Ni
in the hexagonal closed packed Zr lattice. The computed diffusion coefficients of Cr, Ni, and Be agree with the3
experimental measurements within one order of magnitude, while those of Fe are within two orders of magnitude
of the experimental measurements. The drag ratios for Cr, Fe, Be, and Ni are positive up to 1235 K, which
suggests that nonequilibrium vacancy fluxes could drag these solutes toward sinks such as dislocation loops and
grain boundaries. We also compute the transport coefficients without including the metastable states, and using
the eight- and thirteen-frequency model. Our results show significant differences in drag ratio for the eight- and
thirteen-frequency model predictions compared with the Green’s function methodology, but smaller errors in the
solute diffusivity. Combining interstitial and vacancy-mediated diffusivities, we predict the unusual result that
increased vacancy concentration slows down solute diffusivity, while a sufficiently high vacancy concentration
can change the dominant mechanism to an accelerated vacancy-mediated diffusion.
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I. INTRODUCTION32

Zirconium alloys exhibit high corrosion resistance, struc-33

tural stability, and low neutron absorption cross section, which34

makes them suitable as nuclear fuel cladding materials for35

light water power reactors at service temperatures [1]. The36

two common zirconium alloys used as cladding materials in37

light water power reactors are Zircaloy-2(Sn,Cr,Fe,Ni) and38

Zircaloy-4(Sn,Cr,Fe) [2]. The solutes Sn, Cr, Fe, and Ni are4 39

major alloying additions in the zirconium alloy claddings40

[2], and exposure of these alloys to neutron irradiation is41

known to cause a redistribution of alloying elements [3–7]42

with significant consequences to the corrosion performance43

of the alloy [6,8–11]. An understanding of the atomic-scale44

transport of point defects in Zr will provide a step forward45

for new alloy development with increased tolerance to radi-46

ation. Recent advances in computer processing speeds and47
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‡dtrinkle@illinois.edu

availability of massively parallel computing facilities have 48

allowed density functional theory (DFT) simulations to deter- 49

mine the atomistic properties of point defects [12]. Combining 50

DFT results with advanced diffusion models [13] helps con- 51

nect the macroscopic properties with the complex interplay 52

of processes that occur on an atomic scale [14–16]. For the 53

present study, we focus on the four major alloying elements, 54

as well as Be and Al in the HCP Zr matrix. Aluminum 55

could potentially diffuse in to the Zr matrix from the Fe-Cr- 56

Al alloy coatings being developed to improve the oxidation 57

resistance of Zr [17]. Beryllium addition could also improve 58

the oxidation resistance based on a recent computational study 59

of Be stability in Zr surfaces [18]. 60

First-principles studies have computed defect energies 61

and migration barriers of vacancies [19–24], self-interstitials 62

[25–27], and solute-vacancy complexes [28,29] in the Zr 63

matrix; however, the information is insufficient to characterize 64

solute-vacancy flux coupling and there are open issues such 65

as the modeling of metastable vacancy configuration in Zr 66

[22]. First-principles calculations have shown that group IV 67

HCP metals such as Ti [30,31] and Zr [22] exhibit a double- 68

humped basal vacancy migration barrier (cf., Fig. 1) through a 69
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FIG. 1. Double-humped basal vacancy migration in HCP Zr. The
metastable geometry of the vacancy in the 96-atom VASP calculation
is 0.52 eV higher in energy than the ground state (lattice site) and
located halfway between the initial and final positions. The transition
state is 0.55 eV higher in energy than the ground state.

metastable configuration; however, previous investigations do70

not account for the metastable states [29,31,32] and assume71

that a vacancy directly transitions between lattice sites. So-72

lutes could either destabilize these states or form metastable73

solute-vacancy states [31], resulting in a complicated diffu-74

sion network, but existing diffusion models for HCP such75

as the eight-frequency model [33] and the thirteen-frequency76

model [34] are insufficient to capture such a network. A77

recent study [15,16] on vacancy-mediated diffusion in HCP78

Mg illustrated the use of an exact Green’s function [13] (GF)79

approach that computes accurate transport coefficients for any80

arbitrary crystal, but there are no studies to validate the results81

of this approach for a system with metastable states.82

The solutes Fe and Ni were shown to segregate toward83

grain boundaries in irradiated zirconium alloys [35,36] while84

Sn, Cr, Fe, and Ni form nanometer-sized clusters in the85

vicinity of dislocation loops [37–39]. In particular, Fe appears86

to cluster near ⟨c⟩-type dislocation loops which are vacancy87

type [39], suggesting correlation between solute and vacancy88

fluxes. Segregation of solutes could be mediated by vacancies89

wherein the diffusion of vacancies toward sinks drags the90

solutes along; however, experimental measurements of diffu-91

sivity show that Cr [40,41], Fe [42,43], and Ni [43,44] are92

fast diffusers in the Zr matrix, and the interstitial mechanism93

is likely dominant under equilibrium conditions. On the other94

hand, the diffusivity of Sn in the Zr matrix [45] is similar to95

self-diffusion of Zr [46–50], suggesting a vacancy-mediated96

mechanism, but clustering of Sn appears to be anticorrelated97

with Fe and Cr [37,39] which suggests Sn and vacancy fluxes98

could also be anticorrelated.99

First-principles studies also show that Fe [51,52] prefers100

interstitial sites over substitutional sites in HCP Zr. Pasianot101

et al. [53] performed first-principles calculations and found102

low migration barriers for Fe to jump between interstitial103

sites, which could explain why Fe is a fast diffuser in the Zr 104

matrix. In contrast, the solutes Cr [29,51], Be [18], and Ni [52] 105

prefer substitutional sites in HCP Zr. Christensen et al.’s DFT 106

study found that Fe and Cr have a low-energy substitutional 107

configuration with a high magnetic moment and that Cr, Fe, 108

and Ni have a weakly attractive binding with a vacancy in the 109

first neighbor shell [28], which suggests a positive coupling 110

between these solutes and vacancies. A recent study by Lu 111

et al. [29] shows that vacancy has attractive binding with Cr 112

but repulsive binding with Al and Sn, which suggests that 113

the latter two solutes could be uncorrelated with vacancy 114

fluxes; however, this correlation has not been quantified. The 115

study also shows that Cr diffuses via the interstitial mecha- 116

nism, which does not explain how solute-vacancy correlation 117

could influence diffusion. There are currently no computa- 118

tional studies of diffusion coefficients of Fe, Be, and Ni in 119

the Zr matrix. Further, the experimental measurements were 120

carried out at near equilibrium conditions but the dominant 121

diffusion mechanism can change under the effects of irradi- 122

ation such as higher vacancy concentrations [54–57]. Thus, 123

a combined study of both vacancy-mediated and interstitial 124

diffusion mechanisms, along with their vacancy concentration 125

dependence, can provide important quantitative data to model 126

transport in zirconium alloys in equilibrium and radiation 127

environments. 128

In this work, we extend a recently developed Green’s func- 129

tion approach [13,58] to account for the metastable states and 130

use it with inputs computed from DFT to examine vacancy 131

and interstitial mediated diffusion of Sn, Cr, Fe, Be, Al, and 132

Ni in the Zr matrix. We also perform kinetic Monte Carlo [59] 133

(KMC) simulations for comparison with the results of the GF 134

approach. In Sec. II, we discuss our unique treatment of the 135

metastable vacancy states encountered in Zr and the defini- 136

tions of solute-vacancy binding energies and transition rates. 137

Section III describes the procedure for calculating the binding 138

energies and transition rates from DFT. Section IV discusses 139

the DFT results, the diffusion coefficients, and the drag ratios 140

computed using the GF approach and KMC simulations. Our 141

results show that the vacancy-mediated diffusion coefficients 142

for Sn and Al are comparable to the experimental results. 143

The interstitial diffusion coefficients computed using the GF 144

approach and the competition between the interstitial and 145

vacancy-mediated diffusion mechanisms. Our results show 146

that the interstitial diffusion coefficients for Cr, Be, and Ni 147

in HCP Zr agree to within one order of magnitude with the 148

experimental results while those of Fe agree within two orders 149

of magnitude. The drag ratios of Cr, Fe, Be, and Ni are 150

positive, which suggests that vacancy fluxes at nonequilibrium 151

concentrations retained due to irradiation damage could drag 152

these solutes. We also predict that excess vacancies slow down 153

the interstitial diffusion and accelerate vacancy-mediated 154

diffusion. 5155

II. METHODOLOGY 156

A. Vacancy-mediated transport 157

The Onsager transport coefficients [60] are second-rank 158

tensors which describe the overall transport of point defects 159

in alloys. In a binary alloy, the fluxes J⃗S and J⃗V of solute S and 160
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vacancy V are proportional to the gradient of their chemical161

potentials µS and µV162

(
J⃗S

J⃗V

)
= −

(
LSS LSV
LVS LVV

)(
∇⃗µS

∇⃗µV

)
, (1)

where LSS , LSV = LVS , and LVV are the Onsager transport163

coefficients. In the dilute limit, the solute diffusivity DS is164

proportional to LSS ,165

DS = lim
cS→0

kBT
cS

LSS, (2)

where kB is the Boltzmann constant, T is temperature in166

Kelvin, and cS is the solute concentration. The term LSV167

measures the correlation between solute and vacancy fluxes,168

and the drag ratio LSV(LSS )−1 quantifies the solute drag by169

vacancies. A positive drag ratio means that the vacancy drags170

the solute along with it while a negative value means that171

the solute diffuses away from the vacancy. Calculation of172

the transport coefficients requires identifying the set of states173

occupied by defects and the transition rates between these174

states. The following subsections discuss the definitions of175

these states and transition rates.176

B. Solute-vacancy complexes in the dilute limit177

We use the definition of a state introduced in the Green’s178

function methodology [13] and extend it to include the de-179

scription of the metastable states observed in HCP Zr. We180

consider an infinite three-dimensional lattice containing N181

sites in the unit cell (i = 1 . . . N), with the basis vectors ui. We182

define each site with the position vector R = x + ui, where x183

is a linear combination of the unit cell lattice vectors. Then184

the position of a solute is xS + uiS , and the position of a185

vacancy at a lattice site relative to the solute is xS + xV + uiV .186

Therefore, we can represent a solute-vacancy complex state as187

xSiSxViV when the vacancy occupies a lattice site. In the case188

of metastable complex states, the vacancy does not occupy189

a lattice site; instead, two lattice sites are simultaneously oc-190

cupied by “half vacancies” and we use two adjacent vacancy191

positions xViV and yV jV to define a metastable complex state192

as xSiSxViVyV jV. In the dilute limit, we consider only one193

solute and one vacancy in the system, and set xS = 0 using194

the translational invariance of the lattice. Therefore, the set195

of states can be represented by 0iSxViV and 0iSxViVyV jV.196

Note that the states 0iSxViVyV jV and states 0iSyV jVxViV are197

equivalent.198

We determine the thermodynamic range of interaction be-199

tween the solute and vacancy using the solute-vacancy bind-200

ing energies Eb
0iSxViV and Eb

0iSxViVyV jV for a vacancy occupying201

a lattice site and metastable state, respectively. We assume202

that the thermodynamic range is finite, and the vacancy state203

and transition state energies are independent of the solute204

beyond this range. We define the binding energies relative to205

the energy E0iS of a single solute in the system without the206

vacancy, and energy E0iV of a single vacancy at a lattice site207

without the solute in the system208

Eb
0iSxViV = E0iSxViV −

(
E0iS + E0iV

)
, (3)

Eb
0iSxViVyV jV = E0iSxViVyV jV −

(
E0iS + E0iV

)
, (4)

where E0iSxViV is the energy of the complex 0iSxViV 209

and E0iSxViVyV jV is the energy of the metastable complex 210

0iSxViVyV jV. The binding energy decays to zero as the sepa- 211

ration between the solute and vacancy approaches the thermo- 212

dynamic range. Based on the chosen reference, if the vacancy 213

occupies any metastable state outside the thermodynamic 214

range, then Eb
0iSxViVyV jV reduces to the relative energy of 215

metastable state without the solute: E0iVyV jV − E0iV .We define 216

a positive binding energy as repulsive interactions while a 217

negative binding energy denotes attractive interactions. 218

C. Transition rates 219

The minimum energy transition pathway between two 220

states goes through a saddle-point configuration in the po- 221

tential energy surface and we use the harmonic transition 222

state theory [61] to compute the transition rate. We refer 223

to the saddle-point configuration as the transition state, and 224

its location along the minimum energy path as the reaction 225

coordinate. The transition rate ω0iSxViV−x′
S i′Sx′

Vi′V between the 226

initial state 0iSxViV and the final state x′
Si′Sx′

Vi′V is then 227

ω0iSxViV−x′
S i′Sx′

Vi′V = ν0iSxViV−x′
S i′Sx′

Vi′V e
−Em

0iS xV iV−x′
S i′S x′

V i′V
/kBT

, (5)

where ν0iSxViV−x′
S i′Sx′

Vi′V is the attempt frequency and 228

Em
0iSxViV−x′

S i′Sx′
Vi′V

is the migration energy. The migration 229

energy Em
0iSxViV−x′

S i′Sx′
Vi′V

is 230

Em
0iSxViV−x′

S i′Sx′
Vi′V

= ET
0iSxViV−x′

S i′Sx′
Vi′V

− E0iSxViV , (6)

where ET
0iSxViV−x′

S i′Sx′
Vi′V

is the energy of the transition state. 231

Similarly, the transition rate ω0iSxViV−0iSxViVyV jV between the 232

initial state 0iSxViV and the metastable state 0iSxViVyV jV is 233

234

ω0iSxViV−0iSxViVyV jV = ν0iSxViV−0iSxViVyV jV e−Em
0iS xV iV−0iS xV iVyV jV

/kBT .
(7)

We assume that the vacancy at a metastable state only tran- 235

sitions to the adjacent lattice sites. Note that the transition 236

states 0iSxViV − 0iSxViVyV jV and 0iSxViVyV jV − 0iSxViV are 237

equivalent, but different from 0iSyV jV − 0iSxViVyV jV or 238

0iSxViVyV jV − 0iSyV jV. 239

The combined effect of various transition rates governs 240

the solute transport kinetics via the vacancy-mediated mech- 241

anism. Vacancy-mediated diffusion of solutes requires solute- 242

vacancy exchange jumps followed by reorientation jumps of 243

vacancy around the solute. Therefore, the solute diffusion co- 244

efficient depends on the rate-limiting step between exchange 245

and reorientation. Solute drag occurs when the solute and 246

the vacancy diffuse as a complex. Attractive binding ener- 247

gies increase the probability that vacancies migrate toward 248

the solute and form complexes. Alternatively, drag is also 249

possible when binding energies are repulsive, provided that 250

the vacancy reorientation rates around the solute are much 251

faster than the rates to escape away from the solute, which 252

increases the probability that solute and vacancy diffuse as a 253

complex. 254

Calculating the interstitial diffusion coefficient requires 255

identifying the set of interstitial sites and the transition rates 256

between them. In the dilute limit, we consider only one solute 257

diffusing in the system. Therefore, we use the translational 258
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invariance of the system to describe the complete set of states259

using only the interstitial sites located in the unit cell. We use260

harmonic transition state theory [61] to compute the transition261

rate ωα-β for an interstitial to jump from a site α to another site262

β. The minimum energy path for this jump passes through a263

transition state α-β. The transition rate ωα-β is264

ωα-β = να-βe−Em
α-β/kBT , (8)

where να-β is the attempt frequency and Em
α-β is the migration265

energy. The migration energy Em
α-β is266

Em
α-β = ET

α-β − Eα, (9)

where ET
α-β is the energy of the transition state and Eα is the267

energy of the initial site.268

III. COMPUTATIONAL DETAILS269

We perform density functional theory (DFT) calcula-270

tions using the Perdew-Burke-Ernzerhof (PBE) exchange-271

correlation functional [62] and the projector augmented wave272

(PAW) method [63] implemented in the Vienna ab initio273

simulation package (VASP) [64,65]. We describe the Zr, Sn,274

Cr, Fe, Be, Al, and Ni atoms with the electronic configura-275

tions [Kr]4d2 5s2, [Kr 4d10] 5s25p2, [Ar]3d5 4s1, [Ar]3d6 4s2,276

[He]2s2, [Ne]3s2 3p1, and [Ar]3d8 4s2, respectively. We use277

a plane-wave energy cutoff of 500 eV to converge the total278

energy of Zr below 1 meV per atom. We use a supercell of279

size 4 × 4 × 3 (96 atoms) which requires a Monkhorst-Pack280

[66] k-point mesh size of 6 × 6 × 4 to sample the Brillouin281

zone. We use Methfessel-Paxton smearing [65] with an energy282

smearing width of 0.2 eV to integrate the density of states. The283

convergence criterion for electronic minimization is an energy284

difference smaller than 10−8 eV. We relax the geometries285

using conjugate gradient until the force on each atom is less286

than 5 meV/Å. We use spin polarization for the calculations287

involving Cr and Fe, because the ground-state substitutional288

configurations of these solutes have magnetic moments of289

3.82 µB and 3.62 µB respectively. We use the climbing im-290

age nudged elastic band (NEB) method [67] with a single291

image to determine the transition states for vacancy jumps.292

The lattice constants for HCP Zr obtained from structural293

relaxation are a = 3.234 Å and c = 5.171 Å, which agree294

well with experimental data [68] and previous DFT studies295

[69,70]. The calculated vacancy formation energy in Zr is296

2 eV, which is comparable to other DFT results reported in297

the literature [22,32,70–72]. The experimental measurements298

[47,73] estimate that the lower bound for vacancy formation299

energy is 1.5 eV; however, accurate measurements are not300

available. The vacancy formation energies computed using the301

Zr PAW potentials with 4 valence electrons and 12 valence302

electrons differ by less than 20 meV. We performed spin-303

polarized calculations for cells containing Fe, but we find that304

all interstitial configurations have a zero magnetic moment.305

We compute total energies of Zr supercells containing a306

single solute atom in various interstitial sites and transition-307

state geometries and use these energies to calculate the defect308

formation energies and migration barriers, respectively. The309

formation energy E f
α of a single solute atom S at the interstitial310

site α in the Zr lattice is 311

E f
α = EDFT[Sα + (M )Zr] − EDFT[(M )Zr] − EDFT[S], (10)

where EDFT[Sα + (M )Zr] is the DFT energy of the supercell 312

containing a solute at the interstitial site α and M Zr atoms, 313

EDFT[(M )Zr] is the DFT energy of the supercell containing M 314

Zr atoms, and EDFT[S] is the DFT energy of an isolated solute 315

atom. For the 4 × 4 × 3 bulk supercell, M is 96. We set the 316

lowest energy site as the reference and report the energies of 317

all other sites relative to this reference. As a result, the last 318

two terms in Eq. (10) cancel out. We calculate the migration 319

energy Em
α-β as 320

Em
α-β = EDFT[Sα-β + (M )Zr] − EDFT[Sα + (M )Zr], (11)

where EDFT[Sα-β + (M )Zr] is the DFT energy of the transition 321

state between the sites α and β. 322

For solute vacancy complexes and associated transition 323

states, we use DFT supercells of the same size (M = 96) to 324

determine the energies EDFT[(M − 1)Zr+iS] of Zr contain- 325

ing a single substitutional solute, EDFT[(M − 1)Zr+iV] of Zr 326

containing a single vacancy, and EDFT[(M − 2)Zr+0iSxViV] 327

of Zr containing the solute-vacancy complex. The binding 328

energy Eb
0iSxViV of the solute-vacancy complex state 0iSxViV 329

from DFT is then 330

Eb
0iSxViV = EDFT[(M − 2)Zr + 0iSxViV]

− (EDFT[(M − 1)Zr + iS]

+ EDFT[(M − 1)Zr + iV])

− EDFT[(M )Zr], (12)

where the term EDFT[(M )Zr] on the right-hand side balances 331

the DFT energy of M Zr atoms. Similarly, the binding energy 332

Eb
0iSxViVyV jV of the metastable state 0iSxViVyV jV is 333

Eb
0iSxViVyV jV = EDFT[(M − 2)Zr + 0iSxViVyV jV]

− {EDFT[(M − 1)Zr + iS]

+ EDFT[(M − 1)Zr + iV]}
− EDFT[(M )Zr], (13)

where EDFT[(M − 2)Zr + 0iSxViVyV jV] is the DFT energy 334

of the metastable state 0iSxViVyV jV. The migration energy 335

Em
0iSxViV−x′

S i′Sx′
Vi′V

for a vacancy jump between states 0iSxViV and 336

x′
Si′Sx′

Vi′V is 337

Em
0iSxViV−x′

S i′Sx′
Vi′V

= ET, DFT[(M − 2)Zr

+ 0iSxViV − x′
Si′Sx′

Vi′V]

− EDFT[(M − 2)Zr + 0iSxViV], (14)

where ET, DFT[(M − 2)Zr + 0iSxViV − x′
Si′Sx′

Vi′V] is the DFT 338

energy of the transition state between the states 0iSxViV and 339

x′
Si′Sx′

Vi′V. The migration energy between a state 0iSxViV and a 340

metastable state 0iSxViVyV jV is given by a similar expression. 341

We compute the vibrational frequencies of the jumping 342

atom in the initial state and transition state from DFT, and 343

use these frequencies to determine the attempt frequencies. 344

We approximate the Vineyard expression [61] of the attempt 345
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frequency for interstitial transitions as346

να-β =
∏3

l=1 ν∗
α,l∏2

l=1 ν∗
α-β,l

, (15)

where ν∗
α,l are the vibrational frequencies of the interstitial347

atom at site α and ν∗
α-β,l are the real vibrational frequencies348

of the interstitial atom in transition state α-β. For vacancy-349

mediated transitions, we find350

ν0iSxViV−x′
S i′Sx′

Vi′V =
∏3

l=1 ν∗
0iSxViV,l∏2

l=1 ν∗
0iSxViV−x′

S i′Sx′
Vi′V,l

, (16)

where ν∗
0iSxViV,l are the vibrational frequencies of the jump-351

ing atom in state 0iSxViV and ν∗
0iSxViV−x′

S i′Sx′
Vi′V,l are the real352

vibrational frequencies of the moving atom in transition state353

0iSxViV − x′
Si′Sx′

Vi′V. We determine the vibrational frequen-354

cies from the eigenvalues of the force constant matrix, by355

displacing the jumping atom by small amounts (± 0.01 Å)356

along three orthogonal directions and calculating the resulting357

forces. Similar procedure applies for the transitions between a358

lattice site and a metastable state.359

The linearly interpolated migration barrier (LIMB) ap-360

proximation uses the transition-state energies for vacancy361

migration without the solute and the solute-vacancy binding362

energies to approximate the transition-state energies in the363

presence of the solute. The results from the LIMB approxi-364

mation improve for the vacancy transitions which are further365

away from the solute because the energy landscape becomes366

similar to bulk. Computing a large number of transition-state367

energies using DFT is expensive; therefore, we use LIMB to368

approximate the transition-state energies for vacancy jumps369

away from the nearest neighbor shell of solutes which limits370

the number of DFT calculations. The LIMB approximation 371

for the transition-state energy of a vacancy jump between two 372

lattice sites is 373

ET, LIMB
0iSxViV−x′

S i′Sx′
Vi′V

= (1 − r)E0iSxViV + rEx′
S i′Sx′

Vi′V

+
[
ET

0iV−x′
Vi′V

− (1 − r)E0iV − rEx′
Vi′V

]
,

(17)

where ET
0iV−x′

Vi′V
is the transition-state energy for a vacancy 374

jump without a solute and 0 ! r ! 1 is the reaction coordinate 375

of the transition state relative to the initial state. Similarly, 376

the LIMB approximation for the transition-state energy of a 377

vacancy jump between a lattice site and metastable state is 378

ET, LIMB
0iSxViV−0iSxViVyV jV

= (1 − r)E0iSxViV + rE0iSxViVyV jV

+
[
ET

0iV−0iVyV jV − (1 − r)E0iV − rE0iVyV jV

]
, (18)

where ET
0iV−0iVyV jV is the transition-state energy for a vacancy 379

jump without a solute between a lattice site and a metastable 380

state. 381

IV. RESULTS 382

A. Vacancy migration in bulk Zr 383

Figure 1 illustrates the geometries of a single vacancy at 384

a lattice site in HCP Zr and the metastable state located along 385

the basal transition path, which is 0.52 eV higher in energy. 386

The vacancy transitions between a lattice site and metastable 387

state via basal jumps along ⟨112̄0⟩ directions and between 388

two lattice sites via pyramidal jumps along ⟨022̄3⟩ direction. 389

The basal migration barrier computed from DFT is 0.553 eV 390

FIG. 2. The solute-vacancy complex configurations up to the seventh neighbor shell in HCP Zr. The large spheres mark the lattice sites and
the small spheres mark the metastable states. The numbers 1–7 correspond to the successive neighbor shells of an ideal HCP lattice with c/a
ratio =

√
8/3. The letters b, p and c denote basal, pyramidal, and c-axis neighbors, respectively. The darker colors are closer to the solute and

lighter colors are further away. There are six 1b, three 4b and 4b, and six 6b sites in the basal plane of the solute; six 1p, six 2p, twelve 4p, and
twelve 7p sites, located one plane above and below the plane of solute; and two 3c and twelve 5p sites located two planes above and below the
plane of the solute. The sites 4b and 4b are equidistant from the solute but nonequivalent by symmetry. The neighbors below the basal plane
of the solute atom are located at symmetric positions along the c axis (not shown). No metastable state exists between the solute and the 1b
neighbors.
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and the reaction coordinate of the transition state is located at391

r = 2/3. Therefore, the vacancy undergoes a basal transition392

between two lattice sites via a double-humped barrier. The393

pyramidal migration barrier is 0.613 eV, and the reaction co-394

ordinate is located at r = 1/2. The attempt frequency for basal395

jumps and pyramidal jumps out of a lattice site are 5.205 and396

5.849 THz, respectively. The attempt frequency for a jump out397

of the metastable state is 1.758 THz. Our results are compa-398

rable to the vacancy migration barriers from DFT calculations399

reported in the literature: 0.51 [22], 0.54 [70], 0.57 [72], 0.5400

[32], and 0.55 [32] eV for the basal jumps and 0.67 [22], 0.65401

[70], 0.70 [72], 0.53 [32], and 0.62 [32] eV for the pyramidal402

jump. To simplify the description of metastable states, we403

choose to map the metastable states onto a sublattice of sites404

located between the lattice sites and use this mapping in our405

GF calculations. Therefore, our HCP unit cell includes six ad-406

ditional symmetry-equivalent basis sites which have the same407

symmetry and Wyckoff positions as the basal crowdion sites.408

B. Solute-vacancy complexes 409

Figure 2 illustrates the various possible solute-vacancy 410

complexes when the vacancy occupies the lattice sites or 411

metastable states around a solute atom, up to the seventh 412

neighbor shell in HCP Zr. The lattice sites and their multi- 413

plicities (in parentheses) in increasing order of distance from 414

the solute for an ideal HCP lattice are: 1p (6), 1b (6), 2p (6), 415

3c (2), 4p (12), 4b (3) and 4b (3), 5p (12), 6b (6), and 7p (12). 416

Note that the sites 4b and 4b are at the same distance in the 417

unrelaxed geometry but they are symmetrically nonequivalent 418

and relax independently when a solute is introduced. There is 419

a metastable state between any two neighboring lattice sites on 420

the same basal plane, except between the solute (S) and 1b. We 421

label these metastable states using the labels of the neighbor- 422

ing lattice sites; for example, the metastable state connecting 423

2p and 4p is 2p4p. There are two sets of symmetrically 424

nonequivalent metastable states located along [011̄0] and 425

[1̄100], which connect the 1b sites, and we label these states 426

0 0.25
0.52 0.77

0.25 0 0.25
0.27 0.52 0.77

0.250
0.770.52

0.2500.25
0.770.520.27

Sn Fe Be Al Ni
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FIG. 3. Binding energies of the solute-vacancy complexes shown in Fig. 2 calculated using Eq. (12) for Sn, Cr, Fe, Be, Al, and Ni. The
black bars and the black horizontal scale measure the binding energies between a solute and a vacancy at lattice sites, while the red bars and red
scale are for metastable states. We shift the red scale by 0.52 eV, which is the difference between the energy of a vacancy in bulk metastable
configuration and the energy of a vacancy in the ground-state configuration. The red cross indicates if there is no metastable state. For all
solutes, 3c has the largest repulsive binding energy among the lattice sites. The metastable state 1b1b for Fe, Be, and Ni has lower binding
energies than the lattice sites.
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TABLE I. Attempt frequencies (νxp and νxb) in THz and migra-
tion barriers (Em

xp and Em
xb) in eV computed from DFT for solute-

vacancy pyramidal and basal exchange jumps. The reference energy
is the corresponding site energy, that is, 1b for a basal exchange and
1p for a pyramidal exchange.

Pyramidal Basal

Solute νxp Em
xp νxb Em

xb

Sn 3.409 0.992 3.300 0.764
Cr 3.116 0.751 4.507 0.680
Fe 3.664 0.637 3.852 0.632
Be 0.835 0.963 0.916 0.834
Al 0.989 1.057 1.012 0.905
Ni 4.275 0.712 11.247 0.657

as lb1b and 1b1b respectively. The same distinction applies to427

the metastable states 5p5p and 5p5p connecting the 5p sites as428

well. Note that these sites are equivalent for vacancy migration429

in bulk but the presence of both a solute and a vacancy lowers430

the symmetry of the system, thus introducing nonequivalent431

configurations. Previous computational studies of diffusion in432

HCP systems have neglected the difference between lb1b and433

1b1b jumps[29,31–34], which was first shown by Agarwal434

et al. [15] and here again we show that these jumps have435

significantly different characteristics. The metastable states436

and their multiplicities (in parentheses) in increasing order of437

distance from the solute are 1p1p (6), 1b1b (3) and 1b1b (3),438

1p2p (12), 1p4p (12), 1b4b (6) and 1b4b (6), 2p4p (12), 1b6b439

(6), 4p4p (6), 3c5p (12), 2p7p (12), 4b6b (6) and 4b6b (6),440

5p5p (6) and 5p5p (6), and 4p7p (12). A complete description441

of the mapping between our simplified state labels and the442

mathematical description of states is presented in the Table V.443

Figure 3 shows the binding energies computed using444

Eq. (12) for all the complex configurations shown in Fig. 2,445

indicating that the solute-vacancy interactions are non-446

negligible up to the fifth neighbor shell. Every solute exhibits447

cases where there are no metastable states (marked by a448

red ×), most notable for Sn where there are no metastable449

states between the nearest neighbors and next nearest neigh-450

bors, except for 1b1b and 1b1b. We find attractive binding451

with the vacancy in the first and second shells for Sn, Fe, and452

Ni. Tin shows repulsive binding with the vacancy at 1b and453

2p, while Cr, Be, and Al have repulsive binding energies at454

all lattice sites. The site 3c has the largest repulsive binding455

among lattice sites for all solutes. In addition, the metastable456

complex 1b1b for Fe, Be, and Ni have the strongest binding,457

which makes them the lowest energy configurations for these458

systems, and we expect strong correlations between these459

solutes and the vacancy. The geometries of these low-energy460

1b1b complexes are particularly unusual as the moving Zr461

atom displaces close to the solute due to the attractive binding462

(cf., Fig. 18). The binding energies at the sites 6b and 7p463

become negligible for all solutes, so we consider these outside464

the interaction range and set their binding energies to zero in465

our calculations.466

Table I shows that the migration barriers for pyramidal467

exchange are considerably larger than basal exchange for all468

solutes except Fe, where they are comparable. Therefore, we469

FIG. 4. The side view (top) and the (0001) plane projection
(bottom) of the HCP Zr lattice showing the interstitial sites for
Cr, Fe, Be, and Ni solutes. The Zr matrix atoms are in light gray,
octahedral (o) sites are in red, the crowdion sites (c) are in yellow, the
distorted face center sites (fc′) are in light green, and the off-centered
octahedral sites (o′) are in dark orange. In the two-atom unit cell of
HCP Zr, there are two o, six c, six fc′, and twelve o′ sites. The set
of o′ sites are displaced away from the o site at symmetric positions.
The Wyckoff letters for the sites o, c, fc′, and o′ corresponding to the
P63/mmc group are a, g, h, and k, respectively.

expect isotropic diffusion for Fe and anisotropic behavior for 470

all other solutes. Moreover, the barriers are consistently higher 471

than the bulk vacancy diffusion barriers, which suggests that 472

the exchange barrier is the rate-limiting step for diffusion and 473

we expect the activation barriers for diffusion of these solutes 474

to be lower than self-diffusion in Zr. Iron is the only exception 475

where the pyramidal exchange is faster than the bulk diffusion 476

barrier. We have also listed the corresponding attempt fre- 477

quencies, and these values show the largest deviations from 478

the bulk attempt frequencies for all solutes, as compared to 479

other vacancy jumps, which are away from the solute. Our 480

results for Sn, Cr, and Al agree well with those reported in a 481

recent study on diffusion in Zr [29]. 482

C. Interstitial positions 483

Figure 4 illustrates the relative positions of all the stable 484

interstitial sites that we find for the solutes Cr, Fe, Be, and Ni 485

in the HCP Zr lattice. There are six off-centered octahedral o′
486

sites located around the octahedral o site. Similarly, there are 487

three distorted face-center fc′ sites located in the basal plane 488

between the two o sites. We find that the o and o′ sites are 489
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o -o , o -fc , fc -fc  

c-fc , fc -fc

FIG. 5. The networks of interstitial sites for Cr, Fe, Be, and Ni solutes in HCP Zr. The first two networks in the top row contribute only to
basal diffusion while the next two contribute to both c axis and basal diffusion. The three networks in the bottom row contribute only to c-axis
diffusion. In the cases where a jump starts and ends at the same type of site (such as o′-o′), we distinguish the diffusive jump as (b) for a basal
jump and (c) for a c-axis jump.

never simultaneously stable for the same solute. Chromium490

is stable at o (lowest energy), fc′, and c. Iron is stable at491

o′ (lowest energy), c, and fc′. We previously reported that492

Be occupies an octahedral interstitial site in Zr [18] but find493

that upon displacement, the octahedral site relaxes to an o′
494

geometry. Ni is stable at o′(lowest energy) and fc′. In addition,495

the lowest energy interstitial sites for Cr, Be, and Ni are496

higher in energy relative to the substitutional sites by 0.80,497

0.63, and 0.23 eV, respectively. Iron prefers the o′ site to the498

substitutional site by 0.21 eV. Note that the lowest energy sub-499

stitutional Cr and Fe configurations have a nonzero magnetic500

moment of 3.82 µB and 3.62 µB, respectively. Further, we find501

that non-spin-polarized calculations increase the energy of the502

substitutional Cr and Fe configurations by 0.77 and 0.57 eV,503

respectively. However, the magnetic moment of all interstitial504

sites is zero even with spin-polarized calculations.505

The seven possible diffusion networks in Fig. 5, formed506

from the stable interstitial sites in Fig. 4, have different507

contributions to diffusion in the basal plane and along the c508

axis. The first network between o sites and c sites contributes509

to the basal diffusion of Cr. The second network has two con-510

nections: o′-o′ and o′-c, where the former leads to transitions511

within the set of o′ sites in the same unit cell and the latter512

contributes to the basal diffusion of Fe. The third network also513

has two connections, fc′-fc′ and fc′-c, where the former leads514

to transitions within the set of fc′ sites in the same unit cell and515

the latter contributes to both basal and c-axis diffusion of Fe.516

The fourth network has three connections between the o′ sites:517

transitions within the same unit cell, the basal connection (b),518

and the c-axis connection (c). The basal connection between519

o′ sites contributes to the basal diffusion of Be and Ni, while 520

the c-axis connection contributes to the c-axis diffusion of Be. 521

The fifth network between c sites contributes to the c-axis 522

diffusion of Cr. The sixth network between o sites and fc′
523

sites also contributes to the c-axis diffusion of Cr. The seventh 524

network has three connections: o′-o′, o′-fc′, and fc′-fc′, where 525

the o′-fc′ connection contributes to the c axis diffusion of Fe 526

and Ni. 527

Figure 6 depicts the energies of all stable interstitial sites 528

and transition states for Cr, Fe, Be and Ni solutes in Zr, which 529

determines the dominant diffusion pathways. For Cr, the o-c 530

and o-fc′ are the dominant contributions to basal and c-axis 531

diffusion, respectively, with the c-axis jump being faster. For 532

Fe, the o′-o′ and fc′-fc′ jumps are nondiffusive while the 533

o′-c and o′-fc′ jumps which have similar migration barriers 534

contribute to basal and c-axis diffusion. Beryllium is only 535

stable at o′ and both basal (b) and c-axis (c) diffusive jumps 536

are between the o′ sites, with the basal jump being faster. For 537

Ni, the o′-o′ (b) and o′-fc′ jumps contribute to the basal and 538

c-axis diffusion, respectively, and we expect faster diffusion 539

along the c axis because of the lower migration barrier. 540

D. Diffusion coefficients and drag ratios 541

Figure 7 shows that the vacancy-meditated diffusion co- 542

efficients of Sn and Al are comparable to the experimen- 543

tal data [45,74], and there is good agreement between GF 544

calculations and KMC results. Since the two methods give 545

almost identical results, we compute the results for Al and Ni 546

using only the GF method, which is faster and more accurate. 547
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FIG. 6. Relative energies of the stable interstitial sites and the
transition states for Cr, Fe, Be, and Ni in Zr. The thick bold lines indi-
cate the relative energy levels of the interstitial sites which are labeled
below with the corresponding energy values. The thin lines starting
from and ending at a site represent transitions between these sites.
The values associated with these thin lines are the corresponding
transition-state energies. We mark the diffusive transitions between
same type of sites as (b) for a basal jump and (c) for a c-axis jump.

The diffusivity is nearly isotropic for all solutes except Sn,548

which diffuses slightly faster in the basal plane than along549

the c axis. As there is limited experimental data available for550

comparison, it is difficult to comment on the disagreement551

between theory and experiments. Analysis of the finite-size552

effects of the simulations, presented in Appendix A 2, shows553

that this is insufficient to explain this discrepancy; we found554

larger cells increase in the activation barrier, which in turn555

will cause larger disagreements with the experiments. Possible556

explanations for the disagreement could be faster diffusion in557

polycrystalline samples or a nonequilibrium vacancy concen-558

tration. The vacancy-mediated diffusion coefficients of Cr, Fe,559

Be, and Ni are 105 to 108 orders lower than the experimental560

data (not shown), which reinforces the idea that theses solute561

diffuse via the interstitial mechanism at equilibrium.562

Table II shows that the activation barriers and prefactors563

from Arrhenius fits of diffusion coefficients computed using564

the thirteen-frequency models agree well with the GF ap-565

proach, while those from the eight-frequency model show566

large deviations for all solutes except for Al. For the eight-567

and thirteen-frequency models, we assume that the basal tran-568

sitions are between lattice sites only and use the larger of two569

transition-state energies. Even with these approximations, the570

thirteen-frequency model predicts activation barriers within571

20 meV of GF method for both basal and c-axis diffusion572

of all solutes. We attribute these results to the fact that the 573

unique transition state energies in the GF approach beyond 574

the scope of thirteen-frequency model are comparable to the 575

bulk transition state energies, as evident from LIMB com- 576

parisons presented in Appendix A 1. Therefore, the impact 577

on diffusivity predictions are negligible. However, we see 578

significant deviations between the eight-frequency and GF 579

results. The crucial difference between eight- and thirteen- 580

frequency models are the escape jumps out of the 1p and 581

1b configurations. The thirteen-frequency model assumes two 582

unique escape jumps (basal and pyramidal) each from 1b 583

and 1p sites, while the eight-frequency model assumes one 584

unique escape jump each from 1b and 1p. We choose the 585

escape rates which take the vacancy farthest away from the 586

solute. For the eight-frequency model, these rates correspond 587

to the 1b-6b and 1p-5p jumps. For the thirteen-frequency 588

model, these jumps are 1b-6b, 1b-4p, 1p-4p, and 1p-5p. The 589

latter combination creates an energy landscape which closely 590

approximates the transition pathways when considering the 591

full range of interactions. However, the limited choices in 592

the eight-frequency model severely restrict the diffusion path- 593

ways, causing deviations in the activation barrier predictions. 594

Figure 8 shows that the basal and c-axis drag ratios of 595

Cr, Fe, Be, and Ni are positive while those of Sn and Al 596

are negative, and there is good agreement between the GF 597

and KMC results. Similar to the diffusion coefficients, we 598

compute the results for Al and Ni using only the GF method. A 599

positive drag ratio depends on two factors: (1) attractive bind- 600

ing energies and (2) low migration barriers for the vacancy to 601

reorient around the solute compared to dissociation barriers, 602

which increases the probability that the solute and vacancy 603

diffuse as a complex. We attribute the negative drag ratios 604

of Sn and Al to the repulsive binding energies, which cause 605

vacancies to form away from the solute. The reorientation 606

jump barriers for Sn and Al are comparable to the dissociation 607

jump barriers and do not contribute to drag. For Cr, Fe, Be, and 608

Ni, even though most of the binding energies are repulsive, a 609

crucial difference is the low transition-state energies of jumps 610

between the bound states near the solute compared to jumps in 611

the farther neighbor shells. As a result, if the vacancy migrates 612

toward the solute atom, it undergoes repeated transitions 613

within the thermodynamic range of solute. Therefore, the 614

solute and vacancy diffuse as a complex instead of the vacancy 615

escaping away from the thermodynamic range. For example, a 616

common factor for these four solutes is the low barrier to jump 617

from 1b to 1b1b: 0.250 eV for Cr, 0.115 eV for Fe, 0.129 eV 618

for Be, and 0.116 eV for Ni. These barriers are much smaller 619

than the escape barriers, which are close to 0.5 eV. Therefore, 620

Cr, Fe, Be, and Ni can exhibit drag via vacancy fluxes in the 621

HCP Zr matrix. 622

Figure 9 shows that the drag ratios change significantly 623

depending on the model used to approximate the energy land- 624

scape, even though the changes in diffusion coefficients may 625

be negligible. We find that replacing the double-humped bar- 626

rier with a single transition that uses the maximum transition- 627

state energy closely approximates the results with all states 628

included. The largest changes are for the basal drag ratios of 629

Sn, with differences between 0.18 to 0.25 for 600 K to 1235 K. 630

Substituting the metastable state energy for transition states 631

results in increased deviations, most notable for Sn, Be, and 632
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FIG. 7. Diffusion coefficients and activation barriers for vacancy-mediated transport of the solutes Sn, Cr, Fe, Be, Al, and Ni in Zr along the
basal plane (black) and parallel to the c axis (red). We show the activation barriers as sum of two values, where the first value is the contribution
from the vacancy-formation energy and the second value includes contributions from the binding energy and the dominant migration barriers
in the diffusion calculations. For Sn, Cr, Fe, and Be, we compare the diffusivities computed using GF and KMC, and the results are in good
agreement. We also plot the available experimental data for Sn [45] and Al [74]. The diffusivity is nearly isotropic for all solutes except Sn.

Al. In particular, the c-axis drag ratio of Be becomes negative633

above 1200 K, thus predicting a crossover temperature. The634

largest observable change is in the basal drag ratio of Al635

with differences between 1.23 to 0.16 from 600 K to 1235 K.636

However, there is no qualitative change in the drag behavior of637

Al as the values remain negative throughout the temperature638

range. The eight- and thirteen-frequency models, on the other639

hand, lead to both qualitative and quantitative changes in640

drag predictions for some of the solutes. For example, the641

thirteen-frequency model predicts a crossover temperature for642

basal drag of Sn at 700 K, c-axis drag of Cr at 1120 K, c-axis643

drag of Be at 990 K, and basal drag of Al at 1170 K. Similarly,644

the eight-frequency model predicts a crossover temperature645

for c-axis drag of Cr at 1100 K, c-axis drag of Be at 1080 K,646

and basal drag of Al at 1060 K. We expect these results to647

change if different combinations of escape rates are used in648

the eight- and thirteen-frequency models. In addition, these649

models also treat the two different transitions between 1b650

sites as equivalent (1b-1b1b and 1b-1b1b). A recent study651

[15] discusses how this approximation influences drag ratios,652

depending on the relative magnitudes of 1b-1p, 1p-1p, 1b-1b,653

and 1b-1b migration barriers. None of the approximations654

have a significant impact on the drag behavior of Fe and Ni—655

which suggests that even the transition rates accounted for by656

eight-frequency model are sufficient to capture the correlation657

between solute and vacancy fluxes. Based on these results,658

we conclude that accurate prediction of drag ratios potentially659

requires treating all symmetry unique states and transitions660

up to the sixth neighbor shell. Replacing the double-humped661

barrier with a direct transition using the larger energy is a662

reasonable approximation for predicting drag. However, it663

is worth pointing out that efficiently obtaining the correct664

DFT transition state energy for any basal jump first involves665

relaxing the metastable state, followed by single-image CNEB 666

calculations between the metastable configurations and the 667

lattice sites. At the very least, computing the metastable state 668

energy is useful because the migration barriers may be ap- 669

proximated using LIMB. As demonstrated in Appendix A 1, 670

linear interpolation works better between a lattice site and the 671

metastable state. 672

Figure 10 shows that the calculated interstitial solute dif- 673

fusion coefficients for Cr, Be, and Ni agree with the experi- 674

mental measurements within one order of magnitude, while 675

TABLE II. Activation barriers (E a) and prefactors (ν) from
Arrhenius fits of vacancy-mediated diffusion coefficients (D =
νe−Ea/kBT ). The barriers are in eV and the prefactors are 10−6 m2/s.
The activation barrier predictions from full treatment and the
thirteen-frequency model are within 20 meV. The eight-frequency
model shows larger deviations for all solutes except Al.

Full 13 frequency 8 frequency

Solute direction ν E a ν E a ν E a

Sn Basal 0.531 2.784 0.603 2.792 0.607 2.922
c axis 0.633 2.924 0.704 2.933 0.707 3.065

Cr Basal 0.770 2.744 0.859 2.754 0.866 2.830
c axis 0.567 2.764 0.625 2.772 0.625 2.824

Fe Basal 1.318 2.596 1.554 2.606 1.430 2.764
c axis 0.638 2.582 0.729 2.591 0.729 2.711

Be Basal 0.106 2.948 0.113 2.955 0.113 2.994
c axis 0.100 2.986 0.107 2.994 0.107 3.037

Al Basal 0.186 3.070 0.202 3.067 0.202 3.067
c axis 0.187 3.134 0.202 3.131 0.202 3.131

Ni Basal 2.048 2.604 1.997 2.603 1.987 2.806
c axis 0.886 2.611 0.867 2.609 0.867 2.785
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FIG. 8. The drag ratios LSV/LSS in the basal plane and parallel to the c axis. The drag ratios computed using the Green’s function method
(GF) and kinetic Monte Carlo (KMC) are in good agreement for Sn, Cr, Fe, and Be. The drag ratios for Sn and Al remain negative throughout,
while for Cr, Fe, Be, and Ni they are positive. For Ni and Fe, the drag ratios in both the basal plane and parallel to the c axis are close to one.
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FIG. 9. Comparison of drag ratios computed with full treatment (All states) to those computed with metastable states omitted, the thirteen-
frequency model, and the eight-frequency model. We use two different treatments for basal transitions when omitting metastable states: the
vacancy transitions directly between lattice sites with the largest migration barrier (ET = Max{ET

1 , ET
2 }), and metastable state is the transition

state (ET = Emeta). Top figure illustrates the two different treatments and compares them with the full treatment of metastable states for the
case of basal vacancy migration in Zr. The drag ratios computed by omitting metastable states deviate from the results of the full treatment,
with largest changes for Sn and Al. The drag ratios computed from both eight- and thirteen-frequency models show large changes for Sn, Cr,
Be, and Al. The differences between the results from different treatments are negligible for Fe and Ni.
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FIG. 10. The calculated interstitial diffusivities compared to the experimental data for the solutes Cr [40,41], Fe [42,43], Be [75], and Ni
[43,44] in Zr. The basal and c-axis diffusivities and the corresponding activation barriers (Q) are in black and red, respectively. The experimental
diffusivities from polycrystalline samples are in blue. We write the activation barriers for Cr, Be, and Ni as sum of two values; the first value
is the energy of the ground-state interstitial site relative to the substitutional site; the second value corresponds to the dominant migration
barrier; we skip this notation for Fe because the interstitial sites are lower in energy. The diffusivities for Cr, Be, and Ni agree well with the
experimental data. The VASP and CASTEP calculations for Fe are in good agreement but the calculated diffusion coefficients are two orders of
magnitude higher than the experimental data.

those of Fe are within two orders of magnitude. We correctly676

predict the anisotropy of diffusion for Cr. For Fe, we also677

present the results obtained by repeating the calculations678

using a larger cell (150 atoms) and a different DFT code679

(CASTEP) (see Appendix A 2 for details), showing good agree-680

ment, which indicates negligible effects due to differences in681

DFT codes, pseudopotentials, and supercell sizes. However,682

the calculations predict nearly isotropic diffusivities for Fe,683

while experimental results show faster diffusion along the c684

axis. These disagreements between theoretical calculations685

and experimental measurements suggest that the simplistic686

mechanism of a single solute atom jumping through the687

interstitial network does not accurately describe the diffusion688

of Fe in Zr, even for dilute concentrations. Moreover, the689

experimental results show two distinct slopes above and below690

900 K, which suggests different processes maybe dominating.691

Burr et al. [51] used DFT calculations to demonstrate that692

Fe dumbbells in Zr have lower formation energies than iso-693

lated point defects, and that even dilute concentrations of Fe694

could exhibit clustering tendencies. However, more work is695

necessary to determine the effect of Fe dumbbells and clusters696

on the transport mechanisms. To our knowledge, there are no697

single crystal diffusivity measurements for Be diffusion in Zr.698

For Ni, we found single-crystal diffusivity measurements at 699

one temperature only [44]. Therefore, it is difficult to make 700

valid comparisons with experiments regarding the diffusion 701

anisotropy of Be and Ni in Zr. Lastly, we expect the val- 702

ues of the activation barriers to be similar to the dominant 703

migration barriers. However, we note that only Be and Ni 704

show this behavior but the activation barriers for Cr and Fe 705

are smaller than the dominant migration barriers. The reason 706

for this anomaly is that at high temperatures, the probability 707

of occupying the higher energy sites for these solutes is 708

comparable to that of the ground state, because the site energy 709

differences are similar to kBT . As a result, the average energy 710

of the interstitial site is higher than the ground-state energy, 711

and consequently, the activation barriers are smaller than the 712

dominant migration barriers. 713

V. VACANCY SUPERSATURATION 714

At thermal equilibrium, both vacancy-mediated and inter- 715

stitial mechanisms contribute to the total diffusivity DS of the 716

solute S. The total diffusivity DS is then a weighted sum of the 717

interstitial diffusion coefficient DSi and the vacancy-mediated 718
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diffusion coefficient DSZr719

DS = fSi DSi + fSZr DSZr . (19)

Note that vacancy-mediated diffusion requires the vacancies720

to exchange with the solute atoms; therefore, the term DSZr721

is proportional to the vacancy concentration cV. The terms722

fSi and fSZr are the fractional concentrations of the solute as723

interstitial and substitutional defects724

fSi = cSi

cSi + cSZr

= cSi

cS
,

(20)
fSZr = cSZr

cSi + cSZr

= cSZr

cS
,

where cSi is the interstitial solute concentration and cSZr is the725

substitutional solute concentration.726

The solute atoms occupying the interstitial sites combine727

with the vacancies to form substitutional solutes via the Frank-728

Turnbull [76] mechanism. As a result, the concentration of729

solute at interstitial and substitutional sites can be affected by730

vacancies through the reaction731

Si + VZr ! SZr. (21)

If the solutes and vacancies are in local equilibrium through732

this reaction, then we can apply the law of mass action to find733

aSi aV = kaSZr (22)

for a temperature-dependent reaction constant k and activities734

aSi , aSZr , and aV of the interstitial solute, substitutional solute,735

and vacancy. For dilute solute and vacancy concentrations,736

we can rewrite Eq. (22) in terms of concentrations of the737

interstitial solute cSi , vacancy cV, and substitutional solute cSZr738

cSi cV =
ceq

Si
ceq

V

ceq
SZr

cSZr , (23)

where ceq
V , ceq

Si
, and ceq

SZr
are the equilibrium vacancy, inter-739

stitial, and substitutional solute concentrations. Rearranging740

Eq. (23) using Eq. (20) gives741

fSi

fSZr

=
ceq

V

cV

(
f eq
Si

f eq
SZr

)

, (24)

where the term in parentheses depends only on temperature.742

We plot the fractional concentrations in Fig. 11 for the four743

solutes at equilibrium, which shows that Cr and Be prefer744

substitutional sites and Fe prefers interstitial sites at equi-745

librium throughout the temperature range. Nickel starts out746

at substitutional sites but there is an appreciable increase in747

interstitial fraction at higher temperatures.748

Radiation damage or quenching leads to supersaturated749

vacancy and self-interstitial concentrations in the Zr matrix, as750

evidenced by the formation of ⟨a⟩ and ⟨c⟩ loops in irradiated751

Zr samples [54–57]. The ⟨a⟩ loops develop at lower fluences752

and are formed by both interstitials and vacancies, while the753

⟨c⟩ loops develop at higher fluences and are formed by vacan-754

cies only. Moreover, interstitials diffuse much faster than the755

vacancies for a range of temperatures and annihilate at sinks756

while the vacancies accumulate. Therefore, we expect higher757

vacancy concentrations at longer lifetimes of zirconium al-758

loys. A nonequilibrium vacancy concentration retained in the759

600 800 12001000
T K

f S

Be

Cr CASTEP
f eq
SZr

f eq
SI

Fe VASP
Fe CASTEP

Ni

eq

FIG. 11. The fractional substitutional and interstitial solute con-
centration of Cr, Fe, Be, and Ni at equilibrium as a function of
temperature. Solid lines correspond to data from VASP calculations
and dotted lines correspond to data from CASTEP calculations.

matrix can change the equilibrium between the interstitial 760

solutes and substitutional solutes by decreasing the fraction 761

of interstitials. If the vacancy concentration remains dilute, 762

then the fractional solute concentrations under nonequilibrium 763

vacancy concentrations 764

fSi =
f eq
Si

ceq
V

f eq
SZr

cV + f eq
Si

ceq
V

,

fSZr =
f eq
SZr

cV

f eq
SZr

cV + f eq
Si

ceq
V

. (25)

The contribution from interstitial diffusion fSi DSi scales with 765

c−1
V , while the contribution from vacancy-mediated diffusion 766

fSZr DSZr scales with cV. Therefore, excess vacancies mod- 767

ify the contributions from different diffusion mechanisms 768

and a sufficiently high vacancy concentration may cause the 769

vacancy-mediated diffusion mechanism to dominate even if 770

the interstitial diffusion mechanism dominates at equilibrium. 771

Figure 12 shows nonmonotonic behavior of diffusion with 772

increasing vacancy concentration connected to changes in 773

the dominant diffusion mechanism. The excess vacancies 774

decrease the concentration of solute at interstitial sites while 775

increasing the substitutional sites. As a result, the contribution 776

from interstitial diffusion decreases while the contribution 777

from vacancy-mediated diffusion increases. Since the inter- 778

stitial mechanism dominates at equilibrium, the diffusion 779

decreases until both mechanisms contribute equally. Fur- 780

ther increases in vacancy concentration causes the vacancy- 781

mediated mechanism to dominate and the diffusion coefficient 782

increases. The slowdown in interstitial diffusion due to ex- 783

cess vacancies may provide an alternate explanation for the 784

discrepancy between theoretical predictions and experimental 785

measurements for Fe diffusion in Zr, as high vacancy concen- 786

tration would contribute to slower diffusion. 787

VI. CONCLUSION 788

We extend a recently developed Green’s function method- 789

ology to accurately model the vacancy metastable states 790

observed in Zr and calculate transport coefficients for 791
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FIG. 12. Diffusivity of Cr, Fe, Be, and Ni in m2/s as a function of temperature and the ratio cV/ceq
V of supersaturated vacancy concentration

to equilibrium vacancy concentration. The dashed line separates the upper region where the vacancy-mediated mechanism dominates from the
lower region where the interstitial mechanism dominates. The diffusion coefficients are the sum of interstitial diffusion and vacancy-mediated
diffusion mechanisms as a function of cV/ceq

V , using Eqs. (19) and (25).

vacancy-mediated diffusion and interstitial in the dilute limit792

of the solutes Sn, Cr, Fe, Be, Al, and Zr in the HCP Zr793

matrix. We perform DFT calculations to determine the set794

of unique solute-vacancy complexes and transition rates in795

Zr which inform both the GF methodology and the KMC796

simulations. The excellent agreement between the calculated797

diffusivities and the experimental measurements validates our798

methodology and results. The calculated drag ratios for Cr,799

Fe, Be, and Ni are positive, which suggests that vacancy800

fluxes at nonequilibrium concentrations can drag these solutes801

toward sinks such as grain boundaries, dislocation loops, and802

surfaces. We also compute the transport coefficients using803

eight- and thirteen-frequency models, and our results indicate804

that accurate treatment of energies and transition rates up to805

the sixth neighbor shell is essential to correctly predict the 806

drag ratios for solutes such as Sn, Cr, Be, and Al. The transport 807

coefficients calculated in this work can inform higher length- 808

scale models which study microstructural changes such as 809

solute segregation, growth of precipitates, etc. 810

For the first time, we demonstrate the effect of irradiation 811

on the atomic scale diffusion mechanisms by combining 812

the interstitial diffusivities computed in this study and the 813

vacancy-mediated diffusivities. We predict that a nonequilib- 814

rium vacancy concentration can slow down interstitial diffu- 815

sion and accelerate vacancy-mediated diffusion and that a suf- 816

ficiently high radiation-induced vacancy concentration could 817

change the dominant diffusion mechanism. The combined 818

results of interstitial and vacancy-mediated diffusion can also 819
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inform higher length-scale models, which allow for the mod-820

eling of solute redistribution behavior under irradiation. The821

change in transport mechanisms at higher vacancy concen-822

trations reinforces the importance of performing atomic-scale823

transport studies, as experimental diffusivity measurements824

carried out at equilibrium are insufficient to account for the825

effects of irradiation.826

The excess vacancies not only affect the transport mecha-827

nisms in systems under irradiation but also have consequences828

for diffusion in any system containing nonequilibrium point829

defect concentration. We demonstrate that the excess vacan-830

cies strongly influence transport if the solute prefers substi-831

tutional sites. For such solutes, it is imperative to maintain832

a near-equilibrium vacancy concentration during diffusion833

experiments; otherwise, the measurements will overpredict834

diffusivity if the vacancy-mediated mechanism dominates or835

underpredict diffusivity if the interstitial mechanism domi-836

nates. Moreover, even the excess vacancies retained during837

quenching can significantly influence diffusion, particularly838

in metals with low vacancy-formation energies.839
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APPENDIX A: DENSITY-FUNCTIONAL THEORY851

COMPARISONS852

1. LIMB predictions of transition state energies853

Figure 13 shows poor agreement between LIMB predic-854

tions using Eq. (17) and NEB calculations of the pyramidal855

transition-state energies for the vacancy jumps closer to the856

solute, but the agreement improves for jumps which are fur-857
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2p-4b
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FIG. 13. Difference between the transition-state energies from
LIMB predictions using Eq. (17) and NEB calculations of pyramidal
vacancy jumps. The dotted lines correspond to ± kBT at T = 600 K.
The LIMB predictions disagree with NEB for the jumps 1p-1b and
1b-2p, but the agreement improves for the jumps to farther neighbors.

1p-1p1p
1b-1b1b
1b-1b1b
1p-1p2p
2p-1p2p
1p-1p4p
4p-1p4p
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FIG. 14. Differences between the transition-state energies from
LIMB predictions using Eq. (18) and NEB calculations for basal
vacancy jumps. The dotted lines correspond to ± kBT at T = 600 K.
The LIMB predictions are generally in good agreement with NEB
except for the jumps between first nearest neighbors, and a few
outliers such as the jumps out of 1p2p for Ni. The latter case can
be attributed to the low binding energy of Ni with vacancy at the
1p2p metastable state.

ther out. Since we are interested in temperatures above 600 K, 858

we set our error tolerance to ± kBT at T = 600 K, marked 859

by the dotted lines on the figure. For Sn, LIMB agrees well 860

with DFT for all the jumps. In cases of Cr, Be, and Al, LIMB 861

disagrees with DFT for 1p-1b and 1b-2p but the difference 862

is within tolerance for further jumps. In cases of Fe and Ni, 863

LIMB disagrees with DFT for almost all jumps out of 1b 864

and 1p but agrees within tolerance for the 2p-4b jump. We 865

use DFT energies for the transitions shown in Fig. 13 but use 866

LIMB to approximate the further transitions such as 4p-4b, 867

2p-5p, 4p-5p, etc. We use the attempt frequencies of the bulk 868

pyramidal jump for the interpolated transitions in the LIMB 869

approximation. 870

Figure 14 shows an overall good agreement between LIMB 871

predictions using Eq. (18) and NEB calculations of the 872

transition-state energies for basal jumps between lattice sites 873

and metastable states. There are a few outliers such as jumps 874

between the first nearest neighbors for all the solutes and the 875

jumps out of 1p2p for Ni. For Sn, the two jumps out of 1b 876

show good agreement and the rest of the metastable states con- 877

necting 1b and 1p to the next nearest neighbors are unstable. 878

For Cr, LIMB disagrees with DFT for the jumps out of 1p1p, 879

1b1b, 1p2p, and 1p4p, but the agreement improves for 1b4b. 880

Beyond 1p1p, 1b1b, and 1b1b, the agreement is good for Fe, 881

Be, and Al. For Ni, the disagreement for jumps out of 1p2p 882

is high and we attribute this to the large attractive binding 883

energy of the 1p2p complex and its unusual geometry where 884

the moving Zr atom displaces close to the solute. Similar to 885
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FIG. 15. Difference between the transition-state energies from
LIMB predictions using Eq. (17) and NEB calculations of basal
jumps where there are no metastable states. The dotted lines cor-
respond to ± kBT at T = 600 K. For such jumps, LIMB predictions
generally disagree with NEB and we use the NEB energies as input
to our diffusion model.

the case of pyramidal jumps, we use DFT energies for the886

transitions shown in Fig. 14 but use LIMB to approximate887

further basal transitions such as 2p-2p4p, 4p-2p4p, 4p-4p4p,888

etc. We use the attempt frequencies of the bulk basal jump for889

the interpolated transitions.890

Figure 15 shows that LIMB predictions using Eq. (17) and891

NEB calculations generally disagree for the transition-state892

energies of basal jumps where metastable states are unstable.893

Such cases have no bulk analog, so we use Eq. (17) to estimate894

the transition-state energies by making the following choices:895

(1) We set r = 0.5 (where the transition state would be if896

the bulk metastable state was unstable), and (2) we use the897

energy of the basal transition state ET, DFT
0iV−0iVyV jV

(V, ZrM−1) for898

ET, DFT
0iV−x′

Vi′V
(V, ZrM−1). However, our choice of linear interpola-899

tion is insufficient to capture the changes induced by solutes900

to the energy landscape, and most of the LIMB predictions901

differ from NEB by more than the error threshold of ± kBT at902

T = 600 K. Therefore, we use NEB to compute the transition903

state energies of all jumps where there are no metastable states904

and use the computed values in our diffusion calculations.905

TABLE III. Comparison of vacancy formation energies and
migration barriers computed from VASP and CASTEP. The values
of the migration barriers are relative to the ground-state vacancy
configuration. The change in the vacancy formation energies and the
basal vacancy jump barrier are less than 25 meV while the change
in the pyramidal jump barrier is 68 meV between the 96-atom and
288-atom CASTEP calculations.

VASP-96 CASTEP-96 CASTEP-150 CASTEP-288

Formation energy (eV)
Ground state 2.002 2.048 2.061 2.025
Metastable state 2.517 2.609 2.597
Migration barrier (eV)
Basal 0.553 0.598 0.591 0.609
Pyramidal 0.631 0.682 0.729 0.750

1p

1b

2p

3c

4p

4b

4b

5p

6b

7p

0 0.200.100.10
0.52 0.62 0.720.42

Sn

Binding energy eV
Binding energy +0.52 eV 

96-VASP
96-CASTEP
150-CASTEP
288-CASTEP

1b1b

1b1b

FIG. 16. Comparison of binding energies for Sn-vacancy com-
plexes using different DFT codes and supercell sizes. The gray
shaded bars and the black horizontal scale measure the binding
energies of lattice sites, while the red shaded bars and the red scale
are for metastable states. We shift the red scale by 0.52 eV, which
is the energy of vacancy in bulk metastable configuration relative to
the ground-state configuration of the 96-atom VASP calculation. The
results of the 96-atom supercell calculations from VASP and CASTEP

are in good agreement. The intermediate state 1b1b is unstable in the
150-atom and 288-atoms CASTEP calculations. The 1p and 2p sites
show the largest differences in the binding energies across supercell
sizes: 65 and 62 meV, respectively. The rest of the changes are less
than 25 meV.

2. Finite-size effects in the DFT calculations 906

We investigate the variability of results with different DFT 907

codes, pseudopotentials, and supercell sizes by performing 908

calculations of Sn in Zr with the CASTEP code [79]. We choose 909

Sn for this parallel study for several reasons: We can eliminate 910

the effect of magnetism from our study; albeit limited, there 911

is some experimental data for Sn; and lastly, we expect Sn 912

to diffuse via the vacancy-mediated mechanism and serve as 913

validation for our methodology. We use the PBE functionals 914

with ultrasoft pseudopotentials [80] and a plane-wave energy 915

cutoff of 450 eV. We describe the Zr and Sn atoms with [Ar 916

3d10]4s2 4p6 4d2 5s2 and [Kr]4d10 5s2 5p2 valence electrons. 917

We kept all other simulation parameters the same as those re- 918

ported in Ref. [51]. We use supercells containing 96, 150, and 919

288 Zr atoms (4 × 4 × 3, 5 × 5 × 3, and 6 × 6 × 4 replicas 920

of the conventional unit cell). We keep the k-point density 921

as constant as possible across the three supercells, using 922
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TABLE IV. Comparison of vacancy migration barriers for Sn as
a substitutional solute in Zr, computed from VASP and CASTEP. The
values of the migration barriers are relative to the initial site. The
complex 1b1b is unstable in the 150-atom and 288-atom CASTEP

calculations and there is a direct 1b-1b transition. The basal and pyra-
midal exchange barriers show the largest changes between supercell
sizes. The changes in the basal vacancy jump barriers are less than
25 meV while the 1p-1b pyramidal jump barrier changes by 39 meV
between the 96-atom and 288-atom CASTEP calculations.

Migration barriers (eV)

Jump VASP-96 CASTEP-96 CASTEP-150 CASTEP-288

Basal exchange 0.764 0.815 0.807 0.898
Pyramidal exchange 0.992 1.040 1.070 1.156
1p-1b 0.667 0.717 0.778 0.756
1b-1b1b 0.461 0.502
1b-1b 0.507 0.516
1b-1b1b 0.593 0.655 0.671 0.645

Monkhorst-Pack [66] k-point meshes of 4 × 4 × 3, 3 × 3 × 3,923

and 2 × 2 × 2 and a Methfessel-Paxton smearing width of924

0.1 eV. Notably, we observe a significant difference in binding925

energies with coarser k-point grids. The convergence criterion926

for electronic minimization is an energy difference smaller927

than 10−8 eV. We relax the atomic configurations at constant928

volume with the memory-reduced BFGS algorithm [81,82]929

until forces on atoms are less than 10 meV/Å. We use the930

linear and quadratic synchronous transit method (LST/QST)931

[83] within CASTEP to determine the transition states for932

vacancy jumps. We did not enforce symmetry operations on933

any of the CASTEP calculations.934

Table III shows that the 96-atom VASP calculations and935

the 96-, 150-, and 288-atom CASTEP calculations all predict936

similar vacancy formation energies and bulk vacancy migra-937

tion barriers in Zr. Our findings suggest that the existence938

of a metastable state is independent of the DFT codes and939
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FIG. 17. Comparison of 96-atom VASP and 150-atom CASTEP

calculations of site and transition state energies for interstitial Fe in
Zr. Both calculations predict the same set of stable interstitial sites
with o′ as the ground state. The relative energies of sites c and fc′

differ between the two calculations by 130 and 90 meV, respectively.
The transition-state energy between two calculations for the basal
diffusive barrier o′-c differs by 140 meV and the c-axis diffusive
barrier o′-fc′ differs by 30 meV.

TABLE V. Mapping between the mathematical description of a
solute vacancy complex state described in the methodology section
and the simplified labels illustrated in Fig. 2. There are two basis
sites in the HCP unit cell, a

12 [044̄3] and a
12 [404̄9], and we assume

that the solute occupies the first basis site. We list the multiplicity of
each state, a representative vector which describes the state relative to
the position of the solute in Miller Bravais notation, and the distance
between the solute and the vacancy (or the solute and the moving
Zr atom for metastable state). The full set of symmetry equivalent
vectors can be obtained using point group operations to transform the
representative vector. Note that the set of vectors changes when the
solute occupies the second basis site, and the space group operations
transform the first set of vectors into the second set.

Site Multiplicity Representative vector Distance (Å)

1p1p 6 a
6 [112̄3] 2.749

1b1b 3 a
6 [303̄0] 2.801

1b1b 3 a
6 [033̄0] 2.801

1p 6 a
6 [022̄3] 3.189

1b 6 a
6 [224̄0] 3.234

1p2p 12 a
6 [213̄3] 3.576

1p4p 12 a
6 [134̄3] 4.245

1b4b 6 a
6 [145̄0] 4.278

1b4b 6 a
6 [415̄0] 4.278

2p 6 a
6 [404̄3] 4.542

2p4p 12 a
6 [325̄3] 4.822

1b6b 6 a
6 [339̄0] 4.851

3c 2 a
6 [0006] 5.171

4p4p 6 a
6 [055̄3] 5.336

3c5p 12 a
6 [112̄6] 5.418

4p 12 a
6 [246̄3] 5.576

4b 6 a
6 [066̄0] 5.602

4b 6 a
6 [606̄0] 5.602

2p7p 12 a
6 [437̄3] 5.806

4b6b 6 a
6 [257̄0] 5.831

4b6b 6 a
6 [527̄0] 5.831

5p5p 6 a
6 [303̄6] 5.881

5p5p 6 a
6 [033̄6] 5.881

5p 12 a
6 [224̄6] 6.099

4p7p 12 a
6 [358̄3] 6.240

6b 6 a
6 [448̄0] 6.468

7p 12 a
6 [4 6 10 3] 7.212

potentials and it is not an artifact of the finite-size effect. 940

We attribute the energy differences between VASP and CASTEP 941

96-atom calculations to the Zr potential used for the latter 942

case, where the valence shell includes 4s and 4p electrons as 943

well. Subsequent changes in supercell size add only 25 meV 944

to vacancy formation energy and 11 meV to the basal migra- 945

tion barrier, which suggests that finite size does not have a 946

significant affect on these energies. However, there is an in- 947

crease of 68 meV between the 96-atom and 288-atom CASTEP 948

calculations in the pyramidal barrier, which suggests stronger 949

influence of finite-size effects on the barriers. 950

Figure 16 shows that finite-size effect lowers the Sn- 951

vacancy binding energies by less than 25 meV for most con- 952

figurations and Table IV shows that finite-size effects increase 953

the Sn-vacancy exchange barriers. Comparing the 96-atom 954

supercell calculations from VASP and CASTEP, we find the 955

largest changes in the configurations and transitions closest 956
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to the solute atom. The energy of the 1b1b configuration is957

lower by 35 meV, while the basal and pyramidal exchange958

barriers are higher by 49 and 48 meV, respectively. We note959

similar changes in the energy of transition states for jumps960

around the solute atom and we attribute these changes to the961

use of potentials with more valence electrons in the CASTEP962

calculations. Finite size strongly affects the binding energies963

of 1p and 2p configurations, which show differences of 65964

and 62 meV, respectively, between 96-atom and 288-atom965

cells. We also find a metastable state between the basal966

solute-vacancy exchange when simulated in the 288-atom967

cell with CASTEP, which could modify the basal diffusion968

coefficient. Going from a 96-atom to 150-atom cell, the cell969

size increases in the basal plane but not along the c axis,970

while going from 150 to 288 atoms, cell size increases in both971

directions. For most configurations, the energy differences are972

larger between 96-atom and 150-atom calculations compared973

to 150-atom and 288-atom calculations, suggesting a larger974

finite-size effect on configurations in the basal plane than975

along the c axis. Among the migration barriers, the basal and976

pyramidal exchange barriers show the largest changes in the977

288-atom CASTEP calculation: 83 and 116 meV higher than978

the corresponding 96-atom CASTEP calculations. However, the979

changes are less significant going from 96-atom to 150-atom980

calculations, suggesting stronger finite-size effects along the981

c axis on exchange jumps. The high exchange barriers will982

directly effect the diffusivities of Sn in Zr by increasing983

the activation energy for diffusion. Further, we note that the984

exchange barriers in all cases are larger than the vacancy985

migration barriers around the solute atom, which indicates986

that the solute-vacancy exchange is the rate-limiting step for987

the diffusion of Sn. While we did not compute the full range988

of transition-state energies using the larger cell sizes, the989

negligible changes in the site energies away from the Sn atom990

suggests that the far jumps will not be affected by larger991

supercell sizes.992

Figure 17 shows that the 96-atom VASP and 150-atom993

CASTEP calculations predict the same set of sites and dominant994

transitions for Fe interstitials in Zr, but the site and transition995

Fe Fe 2.52.75

RelaxedUnrelaxed

FIG. 18. The figure illustrates the unrelaxed and relaxed geome-
tries of the 1b1b complex for the case of Fe in Zr. The neighbor cage
compresses on relaxation in order to increase the nearest neighbors
of Fe, which leads to stronger bonding. In particular, the distance
between the Fe atom and the moving Zr atom located halfway
between two 1b sites changes by 0.2 Å, while Fe displaces towards
the [01̄10] direction.

TABLE VI. Migration barriers (Em
α−β ) and attempt frequencies

(να−β ) for transitions. The barriers are in eV and the frequencies are
in THz.

Forward Reverse

Solute Jump να−β Em
α−β νβ−α Em

β−α

Cr o-fc′ 8.087 0.214 3.207 0.137
o-c 6.779 0.419 4.132 0.176
c-c 5.945 0.390 5.945 0.390

Fe (VASP) o′-o′ 5.055 0.032 5.055 0.032
o′-c 6.335 0.302 5.515 0.238

o′-fc′ 6.573 0.291 3.104 0.177
fc′-fc′ 2.968 0.034 2.968 0.034

Fe (CASTEP) o′-o′ 5.472 0.030 5.472 0.030
o′-c 6.498 0.443 5.721 0.252

o′-fc′ 6.953 0.344 3.199 0.134
c-fc′ 6.104 0.255 3.189 0.236

fc′-fc′ 2.969 0.319 2.969 0.319
Be o′-o′ 13.095 0.014 13.095 0.014

o′-o′(b) 13.217 0.615 13.217 0.615
o′-o′(c) 12.896 0.746 12.896 0.746

Ni o′-o′ 4.950 0.014 4.950 0.014
o′-o′(b) 5.931 0.493 5.931 0.493
o′-fc′ 4.485 0.399 2.757 0.009
fc′-fc′ 2.789 0.017 2.789 0.017

state energies are different. We extend the discussion pre- 996

sented in the first part of the study for Sn to Fe interstitials as 997

well. Once again we can eliminate the effect of magnetism as 998

interstitial configurations have a zero magnetic moment. Both 999

calculations predict o′ as the ground state, followed by c and 1000

fc′. We previously noted that using potentials with more elec- 1001

trons in the valence shell alone introduced energy differences 1002

of approximately 50 meV in the transition states. We attribute 1003

the additional differences to finite-size effects, such as the 1004

o′-c barrier computed from CASTEP, which is 140 meV higher. 1005

The CASTEP calculation predicts an additional diffusive jump 1006

c-fc′; however, it has a relatively high barrier of 260 meV 1007

which will not be dominant. Past DFT calculations of Fe in Zr 1008

using different codes and simulation parameters have shown 1009

significant variation in relative energies as well as ground 1010

states [28,51,52]. We find that the calculations performed 1011

TABLE VII. Activation barriers (E a) and prefactors (ν) from
Arrhenius fits of diffusion coefficients (D = νe−Ea/kBT ). The barriers
are in eV and the prefactors are 10−6 m2/s.

VASP CASTEP

Solute Direction ν E a ν E a

Cr Basal 0.072 1.16
c axis 0.114 0.96

Fe Basal 0.080 0.27 0.232 0.34
c axis 0.058 0.26 0.221 0.34

Be Basal 0.344 1.25
c axis 0.862 1.38

Ni Basal 0.566 0.72
c axis 0.140 0.63
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with lower k-point mesh size than 3 × 3 × 3 for a 5 × 5 × 31012

cell size artificially stabilize Fe interstitial sites which are1013

unstable, and even predict a nonmagnetic ground state for1014

substitutional Fe which is higher in energy. Our results from1015

two well-converged sets of calculations agree with each other;1016

however, we expect the diffusion coefficients predicted using1017

the CASTEP data set to have marginally higher activation1018

barriers.1019

APPENDIX B: ADDITIONAL DATA 1020

Table V contains the mapping representation of solute- 1021

vacancy complexes, Fig. 18 shows the relaxed geometry of 1022

the low-energy Fe solute-vacancy complex in Zr, Table VI 1023

contains the migration barriers and attempt frequencies for 1024

interstitial diffusion (cf., Fig. 6), while Table VII contains the 1025

Arrhenius fits for interstitial diffusion. 1026
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