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A B S T R A C T   

Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engi-
neering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the 
factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE 
mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the 
techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used 
to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE 
and hydrogen trapping and to develop HE-resistant alloys.   

1. Introduction 

Hydrogen (H), the simplest and the most abundant element in the 
universe, is widely used in industry for chemical processing, including 
oil refining and the production of ammonia and methanol. It can also be 
used be used to store, transport, and deliver energy. Recent years have 
seen a dramatic increase in its use in emerging energy technologies. 

The hydrogen molecule (H2) has an energy density of 120 MJ/kg, 
which is 3 times higher than that of gasoline and is the highest among all 
known fuels [1]. Hydrogen electrolysis and hydrogen fuel cells consume 
and produce electricity on demand, potentially alleviating load-demand 
issues in intermittent renewable energy grids. Hydrogen fuel can be used 
for combustion and electrification and is free of intrinsic carbon emis-
sion. It can hence facilitate the decarbonization of the transportation 
sector, which currently depends heavily on fossil fuels. Hydrogen can 
also serve as a reductant or fuel to decarbonize hard-to-abate high--
emission sectors such as steelmaking [2–4]. It is possible to produce 

hydrogen at scale from a variety of sources, including natural gas, coal, 
biomass, waste plastics, water electrolysis [5], and nuclear power [6]. 
Production methods that have a carbon footprint may be combined with 
carbon capture and storage technologies to reduce the embodied carbon 
emissions of hydrogen production [1]. Hydrogen is being increasingly 
considered as an essential commodity to replace fossil fuels [1,5]. 
Worldwide, national and international initiatives are underway to 
develop a ‘hydrogen economy’, including in the USA [5,7], Japan [8], 
UK [9], Germany [10], Norway [11], Canada [12], China [13], and 
Australia [14]. However, challenges must be addressed to enable this 
vision. Hydrogen is flammable in air at a concentration above the lower 
explosive limit [15] and requires careful handling [1]. Moreover, 
hydrogen can degrade metallic materials, reducing their fracture 
toughness, fatigue resistance and ductility. This effect is called hydrogen 
embrittlement (HE). 

HE is one of the biggest obstacles for the deployment of hydrogen 
energy infrastructure, including the repurposing of natural gas pipelines 
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for the transport of gaseous hydrogen [5,9,12,14,16–19]. Failure of 
energy infrastructure due to HE could lead to life-threatening accidents – 
just one major incident could cause a setback in the worldwide appli-
cation of hydrogen for decarbonization [20–22]. In fact, a recent 
Australian national survey testing public acceptance of hydrogen energy 
indicated that safety is the most important factor in determining peo-
ple’s willingness to use hydrogen [23]. On a 5-point scale where 5 sig-
nifies the highest level of importance, ‘safety’ received an average rating 
of 4.5, higher than reliability (4.3), cost (4.2), and convenience (3.6). 
Beyond the energy sector, HE is an ongoing issue for the use of 
high-strength materials in defense, transport, and construction [24–26]. 

Although HE is a longstanding industrial problem, in recent years 
there has been potential mitigation approaches being proposed and 
verified based on microstructural hydrogen trapping, the advances of 
which were enabled through the improved characterization and 
modeling tools. Here we provide a contemporary overview of HE, 
summarize the latest efforts in using hydrogen trapping for mitigating 
HE, and outline promising future research directions. 

2. Hydrogen embrittlement

Hydrogen can embrittle metals and alloys, a phenomenon that was
first reported almost 150 years ago. In 1874, Johnson [27] found sig-
nificant decreases in the breaking strain of steel and iron specimens after 
immersion in hydrogen-bearing solutions. This mechanical degradation 
was recovered after the hydrogen was fully desorbed, demonstrating 
that this degradation was a result of hydrogen uptake. Johnson also 
found that HE in higher-strength specimens was more significant than 
for those with similar compositions but with lower strength. Since this 
report, over 38,000 papers have been published on the subject [28], 
reflecting the engineering importance, multidisciplinary nature, and 
complexity of HE. Some previous review articles have provided a 
description of the HE phenomena and some understanding of the 
mechanistic causes [16,26,29–59]. 

Before going into detail, it is necessary to distinguish between in-
ternal hydrogen embrittlement (IHE) and environmental hydrogen 
embrittlement (EHE). IHE refers to hydrogen-induced failure caused by 
the presence of pre-existing hydrogen in the alloy and is typically limited 
by hydrogen supply. EHE is the response of the material to hydrogen 
when a specimen is subject to a mechanical load with simultaneous 
hydrogen charging. For EHE, the extent of hydrogen uptake depends on 
the charging time and the hydrogen diffusivity within the material. EHE 
failure typically initiates at the specimen surface, where environmental 

effects are most severe. 

2.1. Variables and metrics 

2.1.1. Hydrogen content 
HE only occurs when a specimen is subjected to a sufficiently high 

stress (either applied or residual) and contains a hydrogen content above 
a critical level, as defined in Fig. 1. The exact critical stress and hydrogen 
content depend on the type of alloy. Metals that require energy to absorb 
hydrogen (i.e., endothermic hydrogen solution), such as Fe and Ni, have 
low hydrogen solubility at ambient temperatures and pressures. These 
metals generally have a low critical hydrogen content, as low as parts 
per million in weight (wt. ppm, wppm, or μg/g). Fig. 1A shows the ul-
timate tensile strength (UTS) of a martensitic steel as a function of 
hydrogen content. Just 5 wt ppm of hydrogen significantly reduces the 
UTS, but less than 2 wt ppm has little influence [60]. The hydrogen 
content in this figure was measured by using hydrogen thermal 
desorption analysis (TDA) [61] and the notched UTS was determined 
using a slow strain rate tensile test (SSRT) on ex-situ electrolytically 
hydrogen-charged specimens [45]. Fig. 1A shows that 
hydrogen-induced fracture for hydrogen concentrations above 7 wt ppm 
occurred at approximately 30% of the UTS in the absence of hydrogen. 
Fig. 1B shows the threshold stress intensity factor for hydrogen assisted 
cracking (KTH) versus diffusible hydrogen content for a martensitic steel 
(AerMet 100) [62], showing decreased KTH with increasing hydrogen 
content. 

The service environment determines the hydrogen content in a ma-
terial, and its measured HE susceptibility may be low if that environ-
ment causes a hydrogen content that is below the critical value for that 
material. For example, the advanced high-strength steel shown in 
Fig. 1A is unlikely to experience HE in automotive applications because 
the hydrogen concentration in service is generally lower than 1 wt ppm 
[63]. Note also that hydrogen uptake is sensitive to the mechanical stress 
state, as the solubility depends on the hydrostatic stress [64,65]. 

2.1.2. Mechanical properties 
HE can reduce alloy strength and/or ductility in tensile tests, as 

shown for two different steels in Fig. 2A and B. Common metrics for HE 
susceptibility for tensile type specimens are strength and ductility loss: 

Strength loss index=
σref − σH

σref
(1)  

Fig. 1. Hydrogen content in common metals and HE susceptibility. (A) The material notch strength (defined by the ultimate tensile strength) of a hydrogen- 
charged untempered martensitic steel decreased with increasing hydrogen content, reaching low values for hydrogen contents above 5 wt ppm, reproduced from 
Ref. [60]. (B) The threshold stress intensity factor (KTH) decreased with increasing diffusible hydrogen content in an AerMet 100 martensitic steel in the near peak 
aged condition with a nominal 1765 MPa yield strength. Hydrogen was charged with increasing cathodic potential to increase the hydrogen concentration. 
Reproduced from [62]. 
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Ductility loss index=
RAref − RAH

RAref
(2)  

where σ H (or RAH) is the strength (or reduction in area) in hydrogen and 
σ ref (RAref) is the strength (or reduction in area) in a hydrogen-free 
condition, typically air or an inert gas. Increased susceptibility to HE 
is manifested by a lower strength σ H or reduced ductility RAH in 
hydrogen, leading to a larger value for the strength or ductility loss 
index. HE may also cause faster fatigue crack growth. This is shown in 
Fig. 2C for an austenitic steel, which required around half the number of 
cycles in the presence of hydrogen to reach the same crack length as 
sample without hydrogen [66]. Strength and ductility loss indices are 
used throughout this paper to compare HE susceptibility, although we 
note issues with their suitability as HE metrics when the applied stress 
intensity factor is greater than the threshold stress intensity factor, 
which can lead to sub-critical crack growth [67–70]. 

HE can also manifest as hydrogen-induced delayed fracture, which 
can be characterized by the time-to-fracture in a U-bend test under 
constant loading, where the time-to-fracture decreases with increasing 
hydrogen content, stress, and/or strain [71,72]. These tests, which load 
the specimen below the UTS (hence without immediate failure) indicate 
that the presence of hydrogen can decrease the threshold stress intensity 
factor required for crack growth or cause sub-critical cracking for certain 
stress conditions [31,42,43,73,74]. This type of HE can occur at 
approximately half of the yield stress with crack velocities up to 10− 4 

m/s [73,74]. A threshold time-to-fracture is generally defined (e.g., 300 
h in the case of Fig. 3A) with a given bending radius (R in the insert 
figure), and this information informs the time required for 
manufacturing high-strength steel products in the automotive industry. 
The U-bend test can be used to create a HE fracture map, as shown in 
Fig. 3B, offering a guide for the manufacturing conditions that would 
avoid HE. 

The effects of hydrogen on alloys are not always detrimental. 
Exposure to hydrogen occasionally results in an increase in yield 
strength and ductility, particularly in materials that have higher 
hydrogen solubility such as face-centered cubic (FCC) iron. An example, 
shown in Fig. 4A–is an annealed Fe–24Cr–19Ni-0.02C austenitic FCC 
steel [75]. Fig. 4B shows cup and cone fracture surfaces, consistent with 
ductile dimple rupture. Higher hydrogen levels led to smaller dimples, 
indicating that hydrogen facilitated ductile fracture. Hydrogen-induced 
strengthening was attributed to solid-solution strengthening, and the 
increased ductility was attributed to the facilitation of mechanical 
twinning by the hydrogen in solution in the austenite [75,76]. 

Hydrogen has even been proposed as a temporary alloying element 
to increase the formability of Ti alloys [77,78]. The Ti alloy is held at a 
relatively high temperature in hydrogen. The absorbed hydrogen in-
duces a phase transformation from α-Ti (hexagonal close-packed, HCP) 
to more ductile β-Ti (body-center cubic, BCC). The Ti alloy is then me-
chanically worked at a high temperature and subsequently, the 
hydrogen is removed by exposure to a low hydrogen fugacity (in a 
vacuum or an inert gas). 

2.1.3. Fracture mode 
The fracture modes of embrittled alloys are normally characterized 

by taking scanning electron microscope (SEM) images of the fracture 
surface from above or in cross-section. Examples are presented in Fig. 5A 
(top view) and B (cross-section), respectively, showing hydrogen- 

(caption on next column) 

Fig. 2. The effect of HE on strength, ductility, and fatigue resistance. HE of 
(A) M1400 martensitic steel and (B) TRIP 800 ferritic/bainitic/austenitic 
showing reduction of UTS and elongation in a slow strain rate test. The samples 
were ex-situ charged with hydrogen and the hydrogen content was measured by 
thermal desorption analysis. (A) and (B) are reproduced from Ref. [60]. (C) HE 
of a SUS304 austenitic steel in a constant-loading fatigue test. The mechanical 
loading was applied at an amplitude of 280 MPa in both tension and 
compression and a frequency of 1.2 Hz. (C) is reproduced from Ref. [66]. 

Y.-S. Chen et al.                                                                                                                                                                                                                                 



International Journal of Hydrogen Energy xxx (xxxx) xxx

4

induced intergranular fracture along prior-austenite grain boundaries 
(GBs) in a tempered martensitic steel [31]. Best practice for the exam-
ination of fracture surfaces requires observations at a tilted angle and at 
a high resolution so that critical but subtle HE features can be properly 
captured and correctly linked with associated mechanisms, as detailed 
in Section 2.2 [30,31]. For example, Fig. 5C provides a 
low-magnification image that may be considered as a manifestation of 
brittle fracture; however, a high-resolution image from the same spec-
imen indicated the presence of fine dimples, as shown in Fig. 5D, indi-
cating some plastic deformation during the hydrogen-induced fracture 
[79]. HE typically causes a macroscopic loss of ductility; nevertheless, 
there are many microscopic fracture modes including voiding, brittle 
fracture, and transgranular quasi-cleavage with micro-ridges as shown 
in Fig. 5E and F [80]. For ductile fracture, as shown in Fig. 4, increased 
density of dimples in HE-affected specimens indicates that hydrogen 
facilitates micro-void nucleation and growth. 

2.1.4. Temperature and strain rate 
HE susceptibility depends on temperature and is often most severe at 

close to ambient temperature, as shown in Fig. 6 [81]. The influence of 
temperature is related to the kinetics of hydrogen diffusion and trans-
port toward susceptible areas in the material microstructure [81,82]. At 

a low temperature, hydrogen does not have sufficient mobility to facil-
itate the diffusion-controlled HE mechanisms that lead to fracture, 
although HE can still take place through a mechanism that does not 
require hydrogen diffusion (such as grain boundary decohesion) [83]. At 
a high temperature, hydrogen is too mobile to be pinned by dislocations. 

Fig. 3. U-bend test for characterizing H-induced fracture. (A) Time-to-fracture as a function of strain using a 300-h limit. (B) Stress-strain HE fracture map with 
the stress evaluated by either X-ray measurement or finite element calculation. Reproduced from [71]. 

Fig. 4. Hydrogen-induced strengthening and enhanced ductility in an 
austenitic steel. (A) Stress-strain curves for an annealed Fe–24Cr–19Ni-0.02C 
austenitic steel with hydrogen concentrations from 5 wt ppm to 133 wt ppm, 
showing that both strength and ductility increased with increasing hydrogen 
content. (B) Fractography indicates cup and cone fracture. The specimen with 
more hydrogen has a smaller dimple size, indicating that hydrogen facilitated 
the ductile dimple rupture. Reproduced from [75]. 

Fig. 5. Fractography of hydrogen-induced macroscopically brittle frac-
tures. (A) and (B) SEM surface and cross-sectional images of a hydrogen- 
embrittled tempered martensitic steel, showing mainly intergranular failure 
due to HE. Source: [31]. (C) and (D) low- and high-magnification SEM images 
of a hydrogen-embrittled API X60 pipeline steel, showing how tilting and 
high-resolution imaging reveals dimples on the fracture surface. Source: [66]. 
(E) and (F) low and high magnification SEM images of a hydrogen-embrittled 
API X60 pipeline steel specimen, showing the quasi-cleavage fracture surface 
and its micro-ridges. Source [80]. 
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Similar to temperature, the kinetics of hydrogen movement affects HE 
susceptibility at different strain rates. Fig. 7A shows that, in the presence 
of hydrogen, the UTS and the elongation (ductility) of a martensitic steel 
are lower (more susceptible to hydrogen) at low strain rates [84]. 
Fractographic analysis (Fig. 7B) indicated a higher fraction of the 
embrittled (intergranular) characteristics at lower strain rates. 

2.1.5. Strength 
As a rule-of-thumb, within a class of alloys, the alloys with higher 

strength tend to be more susceptible to HE [31,35]. As such, extreme 
care should be taken when considering the use of steel with a strength 
greater than 1 GPa in a hydrogen-containing environment. This 
strength-susceptibility relationship can be attributed to the strong 
interaction of hydrogen with crystal defects such as dislocations and 
GBs, which largely determine the strength of the material [29–31,36,50, 
85–88] and higher stresses (and thus hydrogen concentrations) attained 
in the fracture region [58,89,90]. Correlations of HE susceptibility with 
dislocation density and grain size, for a wide range of bainitic and 
martensitic steels with similar strengths, are shown in Fig. 8A and B, 
respectively. 

2.2. Hydrogen embrittlement mechanisms 

Many mechanisms have been proposed to explain HE, based on 
macro- and micro-scale evidence, but agreement has not been reached 
on a universally applicable mechanism. In recent years it has become 
increasingly accepted that several mechanisms may operate simulta-
neously [29–31,56,92]. The mechanisms described here for 
hydrogen-induced sub-critical crack growth have also been covered in 
Refs. [29–32,40]. Mechanistic interpretations are used to build predic-
tive models and to provide an explanation for experimental results, 
particularly for fractography [93–96]. 

2.2.1. Hydride formation 
Westlake proposed in 1969 [97] that HE was the result of brittle 

hydride formation. This embrittlement mechanism is most relevant to 
alloy systems that have a high tendency to form hydrides such as Zr [41, 
98,99], Nb [100], Ti [41,101], and Mg [38,102,103]. Hydrogen is an 
interstitial solute in a metal lattice and can rapidly diffuse and segregate 

to the zone of high hydrostatic stress at a crack tip (Fig. 9A). Hydrides 
form when the hydrogen content exceeds the solubility (Fig. 9B), and 
cleavage of the brittle hydride subsequently occurs along the crystallo-
graphic direction on which the hydride forms (Fig. 9C). The crack is 
arrested when it meets the ductile matrix (Fig. 9C), and another round of 
this sequence begins. Crack propagation can be further facilitated by the 
presence of pre-existing hydrides within the microstructure along the 
crack path. 

In hydride-forming alloys with non-isotropic crystal structure, 
texture engineering can be used to mitigate HE by promoting the for-
mation of hydrides along crystallographic planes that are less detri-
mental to the embrittlement of the component. This has been 
extensively used in the hexagonal Zr alloys, where individual nano-sized 
hydrides preferentially grow on the basal {0001} plane of the hcp 
α-phase. Macroscopic hydride plates align approximately on the 
{10–17} habit plane. In these alloys, tubes and plates are manufactured 
with a strong “split basal” texture where the c-axis of the hcp crystal is 

Fig. 6. Temperature window for HE. The extent of HE of hydrogen-charged 
ferritic/bainitic X90 pipeline steel specimens in terms of the reductions of 
elongation (red) and fracture area (blue). The HE reaches a maximum 
(300–320 K) close to room temperature (293 K). Properties were measured 
using slow strain rate tests with continuous hydrogen charging. Reproduced 
from [81] (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 7. The effect of strain rate on HE. (A) The UTS and the elongation of 
hydrogen-charged and uncharged low-carbon martensitic steel specimens 
decreased with decreasing strain rate in uniaxial tensile tests, showing HE is 
greater at lower strain rates. (B) Fractographic analysis of the specimens in (A) 
showing the surface area fraction of ductile and brittle features, indicating a 
change from transgranular-ductile to intergranular-brittle fracture with 
decreasing strain rate. Reproduced from [84]. 
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predominantly aligned within 30◦ of the normal direction of rolling, 
towards the tangential direction. This encourages hydrides to form 
parallel to the surface, where they pose the least concern for crack 
growth. One drawback of this mitigation strategy is that the orientation 
of hydrides also depends on stress fields, thus upon mechanical loading 
the hydrides may re-orient across the thickness of the plate or tube, 
especially after a thermal cycle in which the hydrides are partially or 
fully dissolved and then re-precipitate upon cooling [98,99]. 

For non-hydride forming alloys such as Fe or Ni, theoretical models 
have attempted to relate their transgranular and intergranular failures of 
HE with the presence of hydrides [104–107]. However, hydride for-
mation at ambient temperature in these alloy systems requires 
extremely high hydrogen fugacities (e.g., 3.5 GPa for iron [108]), which 

are unlikely to be relevant in most service conditions. 

2.2.2. Hydrogen-enhanced decohesion 
In the 1960s and 1970s, Troiano and Oriani proposed the theory of 

hydrogen-enhanced decohesion (HEDE), which postulates that 
hydrogen can directly reduce the cohesive strength of the atomic bonds 
in the metal lattice, leading to brittle fracture, as illustrated in Fig. 10A 
[109,110]. While earlier atomistic studies suggested reductions in 
fracture energy and cohesive strength of up to 90% [111,112], recent 
studies suggest that any reduction is limited to 20–40% [113–115]. 
Given that the lattice/grain boundary strength is roughly 10 times the 
yield stress, a 20–40% reduction in the cohesive strength is insufficient 
to trigger decohesion in the context of conventional continuum theories 
[116]. However, theoretical predictions that account for the role of 
geometrically necessary dislocations and plastic strain gradients lead to 
much higher stresses and hydrogen levels at the crack tip [117,118], 
providing a modern mechanistic rationale for HEDE. 

HEDE is most widely accepted in the context of inducing intergran-
ular failure (Fig. 10B) or phase-boundary failure (Fig. 10C) [117,119, 
120], particularly for high-strength materials [33,121–125]. Atomistic 
modeling suggests that the presence of more than one atomic layer of 
solute segregation can lead to a higher degree of cohesive strength 
reduction [119]. Experimental evidence of HEDE includes the inter-
granular failure observed in a hydrogen-charged Ni alloy tested at a 
cryogenic temperature, where hydrogen-dislocation interactions are 
effectively suppressed, suggesting that hydrogen-induced GB decohe-
sion is responsible for the HE [83]. 

2.2.3. Hydrogen-enhanced local plasticity 
Hydrogen-enhanced ductile fracture with dimpled fracture surfaces 

(e.g., Fig. 4B) was described by the hydrogen-enhanced local plasticity 
(HELP) mechanism by Beachem in 1970s. The theory is that i) intersti-
tial hydrogen atoms concentrate at high tensile hydrostatic stress zones, 
and ii) hydrogen segregates to lattice defects such as dislocations [126, 
127], and increases their mobility [128]. This hydrogen segregation is a 
‘Cottrell atmosphere’, a known effect that reduces the strain energy 
around dislocations [121,129,130]. Fig. 11 illustrates this process. 
Facilitation of the generation and motion of dislocations promotes the 
formation of microvoids and their coalescence, allowing sub-critical 
hydrogen-induced cracks to propagate, resulting in dimpled fracture 
surfaces. 

The central hypothesis of HELP is that hydrogen atmospheres 
enhance dislocation mobility (Step 2 in Fig. 11). This was experimen-
tally demonstrated by using an environmental transmission electron 
microscope (E-TEM) with in-situ mechanical loading on a specimen in a 
hydrogen atmosphere [128,131,132]. A derivative model of HELP was 
proposed that associates the crack path with failure along low energy 

Fig. 8. Dislocation and grain size vs. environmental hydrogen embrittlement susceptibility. Ductility loss index (HE susceptibility, Equation (2)) as a function 
of (A) dislocation density and (B) grain size in a range of bainitic and martensitic steels with similar strengths (853–1142 MPa). The ductility differences were 
measured by comparing the SSRT results in a gaseous hydrogen environment of 45 MPa and in air. Reproduced from [91]. 

Fig. 9. Schematic of the mechanism of hydride-induced hydrogen cracking for 
sub-critical crack growth. 
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dislocation cell walls that form as a result of the enhanced dislocation 
mobility in nanoprecipitation-strengthened steels [92]. Noting here 
again that grain boundary decohesion can still take place in the absence 
of hydrogen-dislocation interactions in some systems such as nickel al-
loys [83]. The HELP mechanism is a qualitative description of the effects 
that lead to embrittlement and does not directly provide a means of 
evaluating the extent of HE. 

2.2.4. Adsorption-induced dislocation emission 
The adsorption-induced dislocation emission (AIDE) mechanism 

proposed by Lynch describes HE that arises from hydrogen adsorption at 
the surface, instead of hydrogen in solution in the bulk [31]. Fig. 12 
illustrates the mechanism: HE is caused by the hydrogen adsorption in 

the metal subsurface [133], which facilitates dislocation activity and 
boosts dislocation emission from a stressed surface. This dislocation 
emission facilitates inward strain and leads to the formation of micro-
voids in the crack-front plastic zone, which coalescence for crack 
propagation, resulting in a dimpled fracture surface. The AIDE mecha-
nism can explain ductile H-induced crack growth that is induced by an 
external source of hydrogen, particularly prevalent in specimens with 
pre-existing surface damage. A similar mechanism, ‘hydrogen-assisted 
micro-fracture’, proposed by Atrens and co-workers [134], also attri-
butes HE to the hydrogen effect at specimen surface but stresses that the 
fracture propagation in the HE of steels (at the UTS) can be as fast as 
61–130 m/s, which exceeds the typical velocity of ductile fracture of 46 
m/s, suggesting the possible presence of another process that leads to the 

Fig. 10. Schematic of the hydrogen-enhanced decohesion mechanism (A) in the lattice, (B) at a grain boundary, and (C) at a phase boundary.  

Fig. 11. Schematic of the hydrogen-enhanced local plasticity mechanism.  
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bulk HE [135]. 

2.2.5. Hydrogen-enhanced strain-induced vacancies 
Based on the fact that hydrogen facilitates the formation of vacancies 

[121,129], Nagumo and Takai proposed the mechanism of 
hydrogen-enhanced strain-induced vacancies (HESIV), which attributes 
the observed dimpled fracture surface (e.g., Fig. 4B) to an abundance of 
hydrogen-stabilized vacancies that are transported by 
hydrogen-activated dislocations and subsequently combined into 
nano-voids during deformation [47]. Nagumo combined thermal 
desorption analyses with delicately controlled straining and annealing 
to introduce and remove vacancies, respectively, in steel specimens. 
Hydrogen-vacancy interactions were correlated with HE. Positron 
annihilation spectroscopy, which can detect both hydrogen and va-
cancies, was also used to provide evidence of the relationship between 
hydrogen-vacancy interaction and HE [136–138]. 

2.3. Hydrogen uptake and inhibition 

Understanding how hydrogen enters materials, and hydrogen uptake 
can be inhibited, is essential for developing strategies to reduce HE. This 
section provides an overview of hydrogen entry, how hydrogen entry 
can be managed, and introduces methods that relate laboratory test 
results to HE problems in the field. 

2.3.1. Internal hydrogen embrittlement: hydrogen uptake and liberation 
Hydrogen is a byproduct of many material fabrication processes, and 

hydrogen uptake can lead to IHE [130,131]. An example occurs in the 
application of an aluminum-silicon (Al–Si) alloy coating, a common 
component of the automotive hot-stamping steels [139–141]. Al and Si 
oxidation in the presence of ambient moisture produces hydrogen, some 
of which dissolves into the steel substrate [142]: 

2Al+ 3H2O → Al2O3 + 6H (3)  

Si+ 2H2O → SiO2 + 4H (4) 

This problem is of particular concern in the automotive industry, 
where high-strength steel is desirable for weight reduction [142]. 
Another example is the exposure of hot or molten steel to air humidity 
during steel production. Hydrogen can be generated and absorbed by 
the steel when the surfaces encounter ambient moisture at high tem-
peratures [112,115]: 

3Fe+ 4H2O → Fe3O4 + 8H (5)  

2Fe+ 3H2O → Fe2O3 + 6H (6)  

Fe+ 4H2O → FeO + 8H (7) 

Other treatments that can lead to hydrogen uptake by steels are 
acidic pickling, electroplating for chromium [143], zinc or cadmium 
[144–148], welding [46,149–151], and in-service corrosion [63]. A 
famous example of HE following electroplating is the catastrophic fail-
ure of tightening bolts during the construction of the San Francisco Bay 
bridge span in California, USA, which cost 40 million US dollars for 
rectification [152]. 

Hydrogen uptake during steel production can be removed by pre- 
service baking [144,153]. For example, baking at 200 ◦C for 10 min 
was found to be sufficient to remove the pre-existing hydrogen in a 
hot-stamped martensitic steel specimens with an Al–Si coating [153]. 
This approach requires consideration of the effect of the heat treatment 
on the microstructure and mechanical properties, which may be prob-
lematic for some high-strength alloys [145,154]. 

2.3.2. Environmental hydrogen embrittlement: hydrogen surface entry and 
inhibition 

Hydrogen in the environment absorbed through the metal surface 
can lead to EHE [155]. The hydrogen supply can be either finite, leading 
to conditions similar to those of IHE, or infinite (relative to the solubility 

Fig. 12. Schematic of the AIDE mechanism. Reproduced from [31].  
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in the material at the relevant fugacity), as is the case for gas trans-
mission pipelines carrying hydrogen. Hydrogen from H2 gas molecules 
in the local environment dissociate, adsorb on the surface, and are 
absorbed into the metal lattice. The process can be formulated as: 

1
2
H2(g) ↔ Hads ↔ Habs ↔ Hlattice (8) 

The absorbed hydrogen content in the material (cH) follows the 
modified Sieverts’ law relating to the solubility constant (S), which is 
specific to the material and its surface condition, the hydrogen pressure 
or fugacity (fH2) in a material, and the amount of pre-existing and 
trapped hydrogen (cT): 

cH = cT + S
̅̅̅̅̅̅
fH2

√
(9) 

The hydrogen fugacity is the pressure that hydrogen would apply if 
the hydrogen acted as an ideal gas and is essentially equal to the 
hydrogen pressure below 200 bar. Fig. 13 indicates that the hydrogen 
concentration in the steels follows the modified Sieverts’ Law for 
hydrogen pressures up to 200 bar [156–158]. Hydrogen traps are filled 
rapidly with hydrogen as it becomes available (i.e., at hydrogen pres-
sures less than 1 bar), which explains the apparent y-axis intercept in 
Equation (9) and Fig. 13. The low hydrogen content in the annealed iron 
sample indicates that the intrinsic hydrogen solubility in pure iron is 
quite low, and that the more substantial hydrogen solubility in steels is 
associated with hydrogen in traps. Sieverts’ law, i.e., Equation (9), can 
be derived using statistical mechanics, as shown in Ref. [156], assuming 
i) the hydrogen in the steel is in equilibrium with the hydrogen in the gas 
phase, ii) NH hydrogen atoms occupy NS sites in the steel lattice having 
Nt trap sites; and iii) only one hydrogen atom can occupy each of the NS 
sites. Note that in many applications (e.g., pipelines, pressure vessels, 
pumps) the metal is exposed to H2 gas for prolonged periods (relative to 
temperature and fugacity) and the dissociation/adsorption/absorption 
reaches a dynamic equilibrium (Reaction (8)). This means that hydrogen 
atoms recombine at the surface and the dissolved hydrogen also desorbs 
back out of the surface. This is not the case for alloys exposed to tran-
sients of high hydrogen fugacity but is the case when the source of 
environmental hydrogen is from corrosion of the alloy. 

In addition to the simplest case of direct contact with gaseous 
hydrogen, contact with hydrogen-bearing gases such as hydrogen sul-
fide (H2S) can also lead to HE [17,44,53,59,160]. For an inert gas like 
methane, the hydrogen solubility in the steel can be determined by 
Sieverts’ law using the hydrogen partial pressure in the gas phase. The 
hydrogen solubility is much higher (up to an order of magnitude higher) 
in the presence of an active gas like hydrogen sulfide that inhibits the 
recombination of hydrogen atoms into hydrogen molecules at the metal 
surface, thereby increasing the hydrogen fugacity at the metal surface. 
For this reason, HE due to hydrogen sulfide is a major concern in gas and 
oil pipes. The usual approach to tackle H2S embrittlement is to impose a 
hydrogen gas pressure in service that is one or several orders of 
magnitude lower than the level that causes HE [161]. An alternative 
approach is to use thicker pipe walls of low-strength steels that are less 
susceptible to HE, but this can lead to reduced gas transmission effi-
ciency and results in higher weight and installation costs [161]. 

In contrast, some gases such as oxygen (O2), carbon monoxide (CO), 
and sulfur dioxide (SO2) can inhibit EHE. Fig. 14A shows that the frac-
ture toughness of X42 and X72 steels in gaseous hydrogen was signifi-
cantly lower than that measured in inert gases like N2 and CH4. 
However, when the gases were combined, the fracture toughness in 
hydrogen + CO (indicated by the red arrows) was similar to the fracture 
toughness in an inert gas, indicating that the CO in the gas mixture 
inhibited EHE [162]. Similarly, Fig. 14B shows that O2, CO, and SO2 
inhibited hydrogen fatigue crack growth [133]. These inhibitor gases, 
particularly oxygen, absorb preferentially at active sites on the surface 
and prevent hydrogen from reaching the steel surface and being 
adsorbed [163–166]. Based on the compelling laboratory evidence for 
gas inhibition of EHE, additional research is now required to properly 

Fig. 13. Equilibrium hydrogen concentration versus charging pressure in 
3.5NiCrMoV steel, 980DP and MS1500 steels for various pressures of gaseous 
hydrogen from 1 to 200 bar at room temperature, measured using gaseous 
hydrogen charging [156–158], compared with literature data for annealed pure 
Fe [159]. 

Fig. 14. EHE susceptibilities for pipeline steels exposed to different gas 
mixtures with hydrogen. (A) The fracture toughness of X42 and X70 pipeline 
steels and (B) fatigue crack growth of X42 steel in the gases that contain various 
contents of hydrogen, showing the inhibition of EHE by O2, CO, SO2. Repro-
duced from Ref. [133]. 
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quantify this effect to allow for the use of a gas mixture strategy to 
address HE problems in gas transmission pipelines. 

Surface coatings such as iron oxide and aluminum oxide have also 
been found to reduce EHE by preventing hydrogen entry [28,167–171]. 
This approach has the advantage that it can be applied to existing 
structures. Hydrogen is an effective reductant, so surface oxides tend to 
be reduced by hydrogen, which may limit the coating life. However, this 
reduction reaction occurs slowly at room temperature [172]. Metallic 
coatings and mechanical surface treatments can also be used to increase 
HE resistance, as demonstrated in Refs. [112,142,173–175], respec-
tively. However, coatings can crack (particularly in aggressive envi-
ronments), so surface modification is ineffective for abrasive 
environments such as bearings [28]. In addition, surface diffusion bar-
riers and gas mixtures only reduce the kinetics of hydrogen uptake and 
do not alter the thermodynamic factors [156]. Unless hydrogen entry 
kinetics are sufficiently low, materials will eventually become saturated 
with hydrogen with continuous hydrogen contact, such as in a gas 
transmission pipeline that might be used for over 30 years. 

2.3.3. Laboratory hydrogen charging 
Laboratory tests use in-situ (concurrent) and ex-situ (prior) hydrogen 

charging [31,45] to simulate service environments. In-situ charging 
during a mechanical test (and often also beforehand to achieve a uni-
form hydrogen content) is optimal for evaluating HE susceptibility. 
Ex-situ charging is simpler to achieve in practice, but hydrogen loss can 
affect the quality of results for materials with high diffusivity or where 
long-duration tests (e.g., fatigue) are required. Erroneously high HE 
resistance can result from hydrogen depletion at the surface, where 
hydrogen cracking typically initiates. During hydrogen charging, sur-
face oxides present on the metal surface may prevent hydrogen uptake, 
which can be mitigated by an activation procedure. 

Gaseous charging generally requires a high pressure and/or high 
temperature to enable hydrogen uptake [176]. This approach is thus 
demanding in terms of laboratory safety and equipment. In contrast, 
cathodic charging requires only an electrolytic cell, which allows the 
specimen (the cathode) to be charged in an acidic, neutral, or alkaline 
solution [146]. Cathodic charging allows for easy generation of high 
fugacity hydrogen (at the level of GPa) within the specimen with an 
overpotential of less than 1 V [156,177,178]. Much higher hydrogen 
fugacities are possible if a hydrogen recombination poison is also added 
to the cathodic charging solution. Depending on the charging parame-
ters, the resulting microstructure can display a strong hydrogen con-
centration gradient within the samples with a hydrogen-rich (or even 
hydride) surface and a hydrogen-poor core, thus cathodic charging is 
often followed by a low-temperature heat treatment to redistribute the 
hydrogen within the bulk specimen. The simplicity and effectiveness of 
cathodic charging have led to its widespread use for HE testing [148], 
despite the fact that quantifying hydrogen uptake is not as 

straightforward as it is for gaseous charging. Hydrogen can also be 
introduced by charging from a plasma [179,180], but this approach is 
less common and it remains uncertain whether the low pressure 
required allows for the introduction of sufficient hydrogen to trigger HE 
[181,182]. 

To better understand the effective cathodic charging fugacity, Atrens 
and co-workers developed a method to relate the hydrogen fugacity to 
the equivalent hydrogen pressure during gaseous charging [156–158, 
177]. This approach is based on the assumptions that i) the hydrogen 
inside the metal has no memory of whether it originates from gaseous 
charging or cathodic charging and ii) the fugacity during cathodic 
charging is equivalent to the fugacity during gaseous charging for the 
same hydrogen concentration. The hydrogen fugacity (fH2 ) for pure iron 
is related to the applied electric potential (Ec) by: 

fH2 = α exp
[
−
(
Ec − E0

H

)
F

βRT

]

(10)  

where F, R, and T are the Faraday constant, gas constant, and absolute 
temperature, respectively. E0

H is the equilibrium potential of the 
hydrogen evolution reaction at the sample surface for hydrogen 
charging at 1 atm of fugacity, hence (Ec − E0

H) is the overpotential that 
controls the hydrogen fugacity. The constants α and β relate to the 
hydrogen evolution reaction (i.e., the acidity of the charging solution) at 
the sample surface. These constants can be determined for pure iron, 
which does not have hydrogen traps, based on literature value of the 
Sieverts’ constant S in Equation (9) (Fig. 13). For a steel, the hydrogen 
solubility data (e.g., Fig. 13 in which hydrogen concentration is 
measured for each cathodic charging condition) can be used to experi-
mentally establish the relationship between hydrogen content and 
hydrogen fugacity [177]. These studies have been further improved by 
electro-chemo-mechanical models that resolve all the reaction rates 
involved in the hydrogen evolution reaction [183]. 

This quantification provides the hydrogen fugacity (and equilibrium 
hydrogen content) at the specimen surface. Time is required to establish 
a uniform hydrogen concentration throughout the specimen. The 
penetration of hydrogen can be predicted using hydrogen diffusion 
equations. Often measurements of the overall hydrogen content in the 
specimen are used to assess the rate of penetration. In addition to the 
charging parameters, the hydrogen content in the specimen can be 
influenced by the surface condition, particularly surface oxides, which 
can affect the hydrogen uptake [156]. Another important experimental 
consideration is time-to-test after hydrogen charging, which affects the 
extent of hydrogen desorption [184]. Even quite short times can alter 
the measured degree of HE in some materials. Where possible, in-situ 
charging during mechanical testing is ideal. When reporting HE results 
using hydrogen charging, it is necessary to give a clear and complete 
description of the experimental conditions to enable comparison with 
the literature. 

3. Hydrogen trapping 

In addition to extrinsic approaches to mitigate HE hydrogen by 
degassing or surface coating, a popular intrinsic approach is to introduce 
additional hydrogen traps into the alloy microstructure. Pressouyre 
[155] proposed the concept of introducing microstructural hydrogen 
traps to mitigate HE in the 1980s. Certain microstructural features act as 
hydrogen traps, which may reduce the amount of hydrogen that is 
available to reach the crack tip. This concept assumes that the trapped 
hydrogen is passive and that it is the lattice hydrogen or diffusible 
hydrogen that leads to HE [27,28,31,32]. However, as shown in Fig. 13, 
the presence of hydrogen traps increases the solubility of hydrogen in all 
alloys, including commercial steels, and these sites can therefore provide 
a future source of hydrogen available for HE. 

An optimal microstructure to resist hydrogen embrittlement is one in 
which the traps do not contribute to embrittlement themselves, nor do 

Fig. 15. Schematic energy profile of hydrogen in the lattice and in a trap. 
Classical lattice diffusion of hydrogen requires Ed to hop between interstitial 
sites. This may vary near trapping sites to Es. Detrapping of hydrogen requires 
an energy of Ea = Eb + Es. 
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they provide an easy source of hydrogen that can contribute to 
embrittlement effects. Here we review the fundamental understanding 
of hydrogen trapping in metals and alloys to establish a scientific ground 
to underpin the design of a HE-resistant microstructure, discussed in the 
final section. 

3.1. Principle 

A hydrogen atom in solution in an alloy can either be a free-moving 
solute in the lattice or it can reside in a trap. Fig. 15 presents the energy 
states for a hydrogen atom: i) the activation energy needed for classical 
migration of hydrogen in a lattice site (Ed), ii) the activation energy 
needed for migration close to a trapping site (Es), iii) the de-trapping 
energy needed for a trapped hydrogen atom to diffuse in the lattice 
(Ea), and iv) the binding energy of the hydrogen atom to a trapping site 
(Eb). These energies can be understood in terms of a simple reaction 
model where the rate of detrapping dx

dt is given by Ref. [185]: 

dx
dt

=A(1 − x)exp
(
− E
RT

)

(11)  

where x is the fraction of free (detrapped) hydrogen, and R and T are the 
gas constant and absolute temperature, respectively. 

For BCC structures at room temperature, interstitial hydrogen atoms 
preferentially occupy tetrahedral sites rather than octahedral sites 
[186–188]. In FCC alloys at room temperature, hydrogen atoms tend to 
reside in octahedral sites, which are larger and have lower multiplicity 
for hydrogen migration [186]. This leads to a lower diffusivity and a 
larger Ed in FCC crystals (e.g., 44 kJ/mol for FCC iron [189]) compared 
to other crystal lattices (e.g., 4.5–5.5 kJ/mol for BCC iron [190]). 

Negative trapping energies reflect that the hydrogen atom in the 
potential well of the trap is more stable and remains in the trap longer 
than it does in a lattice site. Both Ea and Eb in Fig. 15 have been defined 
as the ‘hydrogen trapping energy’ in the literature, depending on the 
measurement techniques. The difference (Es, differs from Ed) is due to 
local atomic-structural heterogeneity near the microstructural trap with 
respect to an ideal lattice, such as the strain field around a dislocation 
[191]. Es may also be affected by multiple trapping sites in a single 
microstructural feature, e.g., the interface and the precipitate structure 
in second-phase precipitates [192–194]. 

The value of Ea is often used to indicate the reversibility of a 
hydrogen trap. At room temperature, a trap with -Ea larger than 50 kJ/ 
mol is considered as ‘irreversible’ since there is a negligible probability 
of escape of a trapped hydrogen atom [28,155]. Irreversible traps act as 
sinks until they are saturated, whereas reversible traps can act either as 
sinks or sources of hydrogen. For example, if a dislocation (a mobile 
trap) passes a reversible trap that has a trapping strength lower than that 
of the dislocation, then the hydrogen in the reversible trap can be 
transferred to the dislocation and be carried along with the dislocation 
[155]. Hydrogen trapping/de-trapping is a thermally activated process, 
so a higher trap strength is needed to confine hydrogen at a higher 
temperature. This is an important consideration in certain application 
environments, such as in the components of a nuclear reactor [195]. 

Considering that hydrogen is highly mobile, equilibrium between the 
hydrogen in the lattice and in trapping sites can be reached rapidly in 
most circumstances [42,43]. The relationship between mobile and 
trapped hydrogen concentrations can be plotted against trap strength, as 
shown in Fig. 16 [196]. For a 10− 2 wt ppm hydrogen in the BCC iron 
lattice (at the bottom of Fig. 16), the strong traps with 50 kJ/mol 
trapping energy have a >90% occupancy (θT > 0.9); whereas weak traps 
with 10 kJ/mol are less than 10% full (θT = 0.1), so that most of the 
hydrogen is in the lattice. 

Finally, it is important to note that Fig. 15 depicts the classical 
hopping mechanism of atomic migration. Hydrogen is sufficiently light 
that quantum tunneling, and nuclear quantum effects can play a sig-
nificant role in migration [191,197–200]. Recent computational work 
showed that quantum tunneling can result in a non-linear Arrhenius 
diffusivity of hydrogen in BCC iron up to the temperature range of 
400–500 K, reveal that quantum effects play a crucial role in the process 
of H migration even at ambient temperatures [201,202]. Nuclear 
quantum effects were also demonstrated to influence hydrogen solubi-
lity, mobility, and trapping in the presence of strain [202,203]. It has 
been shown that nuclear quantum effects can increase the rate of trap-
ping and decrease the rate of escape when hydrogen atoms interact with 
vacancies in BCC iron at low temperatures [204]. Similar findings were 
obtained in diamond [205–207], and it is likely that the consideration of 
quantum effects are essential for the behavior of hydrogen in other 
material systems. Quantum effects should be considered in the study of 
hydrogen behavior, especially in cases where the effects are most sig-
nificant, such as in low temperature hydrogen trapping, high-pressure 
phase stability, mixed hydrogen isotopic composition, and hydrogen 
migration [208,209]. 

Overall, hydrogen behaves similarly to other interstitial elements in 
a metallic matrix, i.e., it segregates to any location where its location 
causes the energy to be lower [210,211], or where atoms are dragged by 
vacancies, dislocations, or other mobile defects. In fact, ‘hydrogen 
trapping’ highlights the uniquely high mobility of hydrogen compared 
to other interstitial solute atoms with larger atomic volumes and masses. 
Fig. 17 illustrates the wide array of microstructural features of 

Fig. 16. Relationship between hydrogen content and trap occupancy as a 
function of trapping/binding energy at absolute temperature. As the lattice 
hydrogen concentration (CL) increases, traps with low binding energies (WB) 
are filled and the trap occupancy (θT) increases. Reproduced from [196]. 

Fig. 17. Illustration of various microstructural hydrogen traps in an alloy. 
Hydrogen can be trapped at interstitial lattice sites, grain boundaries, va-
cancies, alloying solutes, stacking faults, twins, dislocations and their cell walls, 
strain field, voids, second phases and their boundaries, and the free surfaces of 
microcracks. 
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engineering alloys that can act as hydrogen traps, for several length 
scales. Hydrogen trapping can take place at many feature types, 
including dislocations, vacancies, second phase interfaces, and gain 
boundaries [212]. 

3.2. Techniques for studying hydrogen trapping 

This section introduces the computational and experimental tech-
niques that are used for understanding hydrogen trapping. An overview 
of the techniques is followed by typical results for various common 
hydrogen traps. This establishes the foundation for the subsequent dis-
cussion about the roles of hydrogen traps in developing HE-resistant 
materials. 

3.2.1. Atomic-scale modeling 
The performance of atomic-scale simulations of hydrogen in metals 

requires consideration that hydrogen often displays complex chemical 
binding, especially with transition metals. Additionally, hydrogen is 
amphoteric and has charge states of − 1 (hydride ion), 0 (atomic 
hydrogen) and +1 (proton). Thus, atomic-scale simulations of hydrogen 
require a level of theory capable of capturing these nuanced chemical 
interactions. For this reason, first-principle simulations using density 
functional theory (DFT) have been the main approach for understanding 
hydrogen tapping, as they rely on a quantum mechanical description of 
the electronic system. DFT simulations, either static or dynamic, provide 
both thermodynamic and kinetic information by determining the 
ground state energy of hydrogen in crystal lattices and at traps, and the 
activation energy for migration, dissociation, adsorption, and absorp-
tion. The example in Fig. 18A describes the energy for the absorption of 

a hydrogen atom into the tetrahedral interstitial site of BCC iron from 
the (100) surface [213]. The other example in Fig. 18B compares trap-
ping/solution energies of single and multiple hydrogen atoms in various 
positions in a ferrite matrix containing vanadium carbide (V4C3) [214], 
indicating that hydrogen is preferentially trapped in the carbon vacancy 
of V4C3 rather than the interstitial sites of both ferrite and V4C3. This 
result also shows that it is possible for a vacancy to accommodate up to 
two hydrogen atoms. This behavior is observed in many other materials. 
In some cases a single vacancy can accommodate up to 12 hydrogen 
atoms [215–220]. DFT is also used for studying the interaction of 
hydrogen atoms with alloying solute atoms [188,221,222], grain 
boundaries [223–225], and second phase precipitates [188,214, 
226–233]. 

Recent DFT studies have shown that the ground state energy of 
hydrogen in an interstitial site is strongly dependent on the composition 
of its immediate surroundings and is relatively insensitive to crystal 
features and defects beyond the first shell of nearest neighbors [188,222, 
231,234–237]. This insight is being used to develop a high throughput 
simulation method based on DFT simulations of the local environment, 
thus avoiding the computational burden of modeling a large simulation 
cell representative of the true alloy [188]. 

The significant computational cost of DFT limits the scale to a few 
hundred atoms. This size of model does not allow a full description of 
many of the microstructural features involved in HE mechanisms and 
hydrogen trapping. Even a simple dislocation requires over 1000 atoms 
for a full description of the core and local structure. Longer length scales 
requires use of classical molecular dynamics (MD) or tight-binding 
[238], which is an approximation of DFT with a tunable degree of as-
sumptions and thus a sliding scale between DFT and classical MD. 
However, a recent study of Zr–H potentials showed that reliable Zr–H 
tight-binding simulations require a similar level of computational cost to 
DFT [239]. Also, there are few tight-binding codes available, and these 
are typically not as evolved or approachable as DFT codes. On the other 
hand, classical MD lacks the chemical accuracy and transferability of 

Fig. 18. DFT calculation of hydrogen solute energy. (A) At the ferrite sur-
face [166]. (B) At an interstitial site or a carbon vacancy of vanadium carbide 
(V4C3) [214]. 

Fig. 19. 2D slice of a MM/QM model to simulate a hydrogen atom. The 
small grey sphere in the inset is the hydrogen atom in a screw dislocation in an 
FCC lattice, where the color indicates the level of theory used to compute forces 
on those atoms: orange indicates quantum mechanics (typically DFT), purple 
indicates classical molecular mechanics potentials (e.g., embedded atom 
method, EAM), and blue indicates a buffer region where both approaches are 
used to avoid discontinuities. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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DFT because it relies on a pre-defined description of inter-atomic forces. 
Some of the more complex and advanced interatomic potentials can 
describe multiple charge states of hydrogen [240,241], but these come 
at greater computational cost and have shown limited robustness and 
transferability. Recent developments of machine-learning potentials for 
MD also show good promise to facilitate HE research [242–244]. 

In contrast, the hybrid quantum mechanics-molecular mechanics 
(QM-MM) method is a promising development for larger-scale simula-
tions of hydrogen in metals. This approach divides a simulation cell into 
two or three concentric regions. Fig. 19 shows an example in which an 
inner region centered around the hydrogen atoms uses DFT to describe 
the chemical interactions with quantum mechanical accuracy, while the 
outer region uses classical potentials to describe the long-range structure 
of the microstructural feature of interest. An intermediate “buffer” re-
gion where both DFT and classical potentials are used is often also added 
to provide convergence and eliminate artifacts of discontinuity between 
the two regions. QM-MM has proven successful for molecular and bio-
logical systems [245], but it has only recently started to be used for 
solid-state metallic systems, for example, in the investigation of the 
interaction between hydrogen and dislocation in BCC Fe [246]. More 
applications of this new method with the continuing increase of 
computational power can be expected in near future. 

The methods above can be paired with other techniques when nu-
clear quantum effects are important. An example is path integral mo-
lecular dynamics (PIMD) [247,248], which has made progress in the last 
decade to make it approachable even at the DFT level of theory [208, 
249–254]. In PIMD, instead of following one trajectory of motion 
dictated by Hook’s and Newtown’s laws, the simulation follows several 
imaginary trajectories and integrates between them to yield a proba-
bility of the hydrogen position and vector. These additional aspects 
indicate changes to the properties of hydrogen. Fig. 20 shows that the 
predicted diffusivity of hydrogen in BCC iron can be underestimated by 
several orders of magnitudes if nuclear quantum effects are not included 
[203], and this is supported by literature findings [201,202,255]. The 
same study found that approximately 30% of the hydrogen binding to a 
vacancy in BCC iron is due to finite temperature effects, and about half 
of that arises from nuclear quantum fluctuations [203]. In addition to 
PIMD, the Many-Interactive-World theory of Hall, Deckert, and Wise-
man [256], recently implemented by Sturniolo [257], has received 
increasing attention in hydrogen modeling. This approach complements 
PIMD and describes the ground state rather than a dynamic state at a 
finite temperature. These approaches provide a path to include quantum 
effects in understanding hydrogen trapping. 

3.2.2. Thermal desorption analysis 
Experimentally, thermal desorption analysis (TDA) and hydrogen 

permeation tests are both used to measure hydrogen trapping. A TDA 
set-up is illustrated in Fig. 21A. A hydrogen-charged bulk specimen is 
placed in a programmable furnace that connects to a gas detector (either 
a gas chromatograph or a quadrupole mass spectrometer), a vacuum 
pump to evacuate the desorbed gas, and, in some cases, an inert purging 
gas (typically nitrogen or helium) to minimize artifacts from residual 
ambient gas in the chamber [184] and to avoid gas-surface reactions. 
Desorbed hydrogen is measured as the specimen is heated (Fig. 21B). 
Hydrogen desorption peaks at different temperatures are attributed to 
the desorption of hydrogen from various microstructural hydrogen 
traps. This is supported by knowledge of the specimen microstructure 
obtained by using advanced characterization techniques such as trans-
mission electron microscopy (TEM) [259,260]. Hydrogen de-trapping is 
a thermally activated process, so the de-trapping energy of a peak 
associated with a specific hydrogen trap can be evaluated by repeating 
desorption experiments with different heating rates on the same mate-
rial (but not the very same specimen since the heating can change the 
surface and microstructure of the specimen) [61]. TDA has also been 
used in isothermal mode to allow the measurement of hydrogen diffu-
sion at various temperatures [261,262]. 

Fig. 20. Effect of including nuclear quantum effects (including tunneling) 
on the calculated diffusivity of hydrogen in BCC-Fe. Hollow points only 
consider classical mechanisms (classical molecular dynamics). Filled points 
include nuclear quantum effects through path integral methods. Red points use 
tight-binding to describe inter-atomic interaction from Ref. [203], blue points 
use classical potentials from Ref. [201]. The green line is experimental data 
from Refs. [159,258] and the red line is quantum transition state theory (which 
also accounts for quantum tunneling) from Ref. [207]. Inset is the density 
distribution of hydrogen (blue iso-surfaces) in the BCC-Fe lattice (red sphered). 
Reproduced from [203] (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 21. Thermal desorption analysis for the study of hydrogen trapping. 
(A) Thermal desorption spectrometer setup with inert gas purging. (B) Example 
TDA data and peak deconvolution from a martensitic steel quenched from the 
austenite temperature (experimental and simulated datasets) [259]. 
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Additional insight about the link between specific microstructural 
features and hydrogen desorption peaks is possible by comparing the 
TDA of specimens that have different heat treatments or different 
compositions [177]. However, the assignment of peaks can be specula-
tive [184] and it is common for a large peak to have contributions from 
multiple overlapping constituent peaks, (e.g., Fig. 21B), which then 
requires a deconvolution process to link the constituent peaks with in-
dividual microstructural features [204]. Contemporary hydrogen trap-
ping research usually combines TDA data about the trapped hydrogen 
content and trapping energies with data obtained using complementary 
analytical techniques [73,160,204,179]. 

The time-to-test, the environment, and the specimen dimensions are 
the most significant variables for hydrogen quantification by TDA [153]. 
Fig. 22A shows that the amount of hydrogen loss from iron specimens 
over time (where hydrogen absorption is endothermic) is greater if the 
specimens were held in vacuum than in argon, Fig. 22B shows that 
smaller specimens retain less hydrogen, and that there is fast hydrogen 
loss in vacuum, consistent with findings in Ref. [263]. These issues 
explain some of inconsistency of hydrogen measurements between 
research groups and raise issues that need to be considered for quanti-
tative hydrogen analyses on microscopic specimens where hydrogen 
egress is rapid, such as specimens prepared for microscopy experiments. 
Recent developments in low-temperature TDA (L-TDA, or cryogenic 
TDA as C-TDA) addresses some of the challenges in retaining hydrogen 
that desorbs at room temperature or below [181,182]. 

Fig. 22. The influence of TDA experimental parameters. Hydrogen in iron samples as a function of (A) holding time after hydrogen charging in both argon and 
vacuum environments and (B) thickness after exposure to vacuum for two different durations [153]. 

Fig. 23. Hydrogen permeation. (A) Schematic of the hydrogen permeation 
experiment. (B) Activities at the specimen surface. (C) Example hydrogen 
trapping measurement by a decay transient (from − 1.2 V to − 1.1 V). A 
3.5NiCrMoV medium strength steel and 0.1 NaOH charging solution were used. 
(C) is reproduced from Ref. [265]. 

Fig. 24. Overview of spatial and temporal resolutions of common 
hydrogen mapping techniques. SKP(FM): scanning Kelvin probe (force mi-
croscopy). APT: atom probe tomography. SIMS: secondary ion mass spectros-
copy. HMT: hydrogen microprint technique. TDS(A): thermal desorption 
spectroscopy (analysis). Reproduced from Ref. [86]. 
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3.2.3. Hydrogen permeation 
A hydrogen permeation setup and the steady-state hydrogen con-

centration profile through the specimen are illustrated in Fig. 23A and B 
[183]. The specimen is generally in the form of an approximately 1 mm 
thick sheet (L in Fig. 23B), and is the working electrode of both elec-
trolytic cells in Fig. 23A. Hydrogen is generated at the specimen surface 
in the left-hand cell by cathodic hydrogen charging either at a constant 
potential (ΔV1), as noted in the figure, or a constant current density. The 
applied potential generates a hydrogen fugacity that is designated as fH2 
in Fig. 23B, which establishes an equilibrium hydrogen content (CH) in 
the specimen that can be evaluated via Sieverts’ law, i.e. Equation (9), 
and can be evaluated from the steady state hydrogen flux through the 
specimen. The hydrogen diffuses through the metallic specimen from 
the hydrogen-charging side to the exit side where the hydrogen flux is 
measured as a current as the hydrogen is oxidized in the oxidation cell 
by the application of a suitable potential (ΔV2) to the working electrode. 
The technique is sensitive to small hydrogen fluxes through the spec-
imen as it is possible to reliably measure a small current [156,177,264, 
265]. 

A typical permeation experiment uses an inert gas such as nitrogen 
sparged into the hydrogen entry cell to prevent the evolution of surface 
gas bubbles that can affect the active area for the reaction. De-aeration 
of the solution in the oxidation cell is used to remove the current asso-
ciated with the oxidation of dissolved oxygen in the solution. The exit 
surface of the specimen is typically coated with Pd (or Ni) to prevent 
oxidation. Generally, there is a surface oxide on any metal specimen 
(regardless of the specimen preparation method), and long-term pre- 
charging has been shown to be required for hydrogen charging of steels 
at moderate hydrogen fugacities to reduce the surface oxide to a stable 
condition and avoid irreproducible hydrogen permeation transients. The 
hydrogen concentration is linear across the specimen toward the exit 
side where CH = 0 under steady state conditions. 

Any alloy specimen has reversible hydrogen traps, as indicated in 
Fig. 13, and the decrease of the hydrogen charging potential (ΔV1) de-
creases the entry-side hydrogen fugacity leading to a decay transient 
measured at the exit side. Fig. 23C shows how the hydrogen decay 
transient can be used to estimate the amount of reversibly trapped 
hydrogen by comparing it with the simulated data for a trap-free 

specimen. The trapping energy can also be obtained by adjusting the 
energetic factors such as temperature [265]. 

3.2.4. Microscopy techniques 
In recent years, microscopy has been used to correlate hydrogen and 

microstructural features. Microscopic characterization of hydrogen is 
challenging for four reasons. First, hydrogen is mobile in metallic 
specimens and can desorb from the specimen rapidly. Second, micro-
scopic specimens have generally small dimensions and total hydrogen 
egress is faster from a specimen with small dimensions (see Fig. 22B). 
Third, conventional electron microscopes typically cannot detect 
hydrogen, due to the low atomic mass of hydrogen and low interactivity 
with the incident electron beam [266–269]. For this reason, 
electron-based techniques are not generally useful for the character-
ization of hydrogen unless it is chemically bonded in stable phases. 
Fourth, residual hydrogen gas is present in the vacuum system of ion 
beam or electron microscopes [270–272], so the source of any detected 
hydrogen is uncertain [273,274]. The techniques available for the 
characterization of hydrogen trapping are summarized in a compre-
hensive review by Koyama et al. [86]. Here we introduce these tech-
niques in three groups according to their mode of hydrogen detection. 

Firstly, neutron beams can provide a contrast between hydrogen 
isotopes and other elements based on their distinct scattering cross- 

Fig. 25. Comparison of literature data for hydrogen trapping energies 
(-Eb) for common features in the BCC iron matrix. Reversibility of hydrogen 
trapping is defined as 50 kJ/mol. Reproduced from [229]. 

Table 1 
Trapping energies of common hydrogen traps in the BCC iron matrix.  

Trap type Binding energy 
(-Eb, kJ/mol) 

Characterization 
technique 

Reference 

Solute elements 
Si, Cr, Mn, Co and 

Mo 
Approx. 0 First Principle [221] 

C (interstitial) 9 First Principle [221] 
N (interstitial) 13 Magnetic Relaxation [300] 
Nb − 7a First Principle [221] 
Ti − 8a First Principle [221] 
Mg − 15a First Principle [221] 
Sc − 20a First Principle [221] 
Y − 25a First Principle [221] 
Crystal defects 
Single vacancy 24–78 First Principle, 

Diffusion Analysis 
[221, 
301–304] 

Micro-voids 40 TDA [305] 
Dislocations (bulk) 60 Diffusion Analysis [306] 
Screw dislocations 26 First Principle [200] 
Dislocation strain 

field 
12–27 Diffusion Analysis, 

TDA 
[190,307, 
308] 

Grain boundary 9–49 Mechanical Analysis, 
TDA 

[308–311] 

Prior austenite 
grain boundary 

47 Permeation [312] 

Second phases 
Incoherent TiC 60–129 Permeation, TDA [259,313, 

314–316] 
Semi-coherent TiC 48 TDA [259] 
Incoherent V4C3 40 TDA [317] 
Semi-coherent 

V4C3 

25–28 TDA [318,319] 

Incoherent NbC 55–60 TDA [320] 
Semi-coherent NbC 28–56 TDA [320,321] 
Coherent Mo2C 11–34 TDA [322–324] 
Cementite/α 

interface 
11–18 Permeation, TDA [308,325, 

326] 
ε carbide 12–65 Permeation, TDA [327,328] 
ε copper 27 TDA [311] 
Dispersed oxide 45 Permeation, First 

Principle 
[329,330] 

MnS interface 64 TDA [305,307] 
Austenite/Ferrite 

interface 
44 Permeation [331] 

Iron oxide interface 43–62 TDA [332] 
Al2O3 interface 71 TDA [333]  

a Negative value means repulsive. 
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sections [275]. Neutron imaging can be used to map the distribution of 
hydrogen with sub-millimeter precision by comparing specimens with 
and without hydrogen [276,277]. Neutron imaging is non-destructive 
and can also provide reconstructed 3-D data. 

Secondly, spatial distribution of hydrogen can be mapped by using 
spatially resolved mass spectroscopy techniques such as secondary ion 
mass spectroscopy (SIMS) [278] and atom probe tomography (APT) [29, 
86]. The methods utilize ion bombardment and field evaporation, 
respectively, to remove and detect atoms from the specimen, including 
hydrogen, allowing the creation of atom maps at the micro- and 
nano-scale. Both techniques are sensitive to light elements, but the 
analysis of hydrogen is complicated by the presence of hydrogen as a 
residual gas in their vacuum chambers. Uncertainty over the origin of 
the hydrogen detected can be circumvented by using deuterium (2H or 
D), the second most abundant hydrogen isotope. Deuterium has a larger 
atomic mass that is easily differentiated from the primary isotope of 
hydrogen (protium, 1H) by mass spectrometers, and can be used during 
charging (if charging with hydrogen is a part of the experiment) [87, 
194,231,278–285]. The different masses and hence slightly different 
diffusivities of 1H and 2H [255] do not normally significantly influence 
the distribution of hydrogen within samples at ambient conditions 
[286]. Hydrogen loss is a particular problem because of the small 
specimen size for SIMS and APT [285]. For APT, hydrogen loss has been 
mitigated using cryogenic sample transfer to inhibit hydrogen desorp-
tion, which led to cryo-APT [87,194,280,281,283,284,287–289]. 
Cryogenic transfer/analysis for SIMS is also possible and has been 
demonstrated for a ferritic steel [290], but is not yet available for the 
NanoSIMS. Even without cryogenic capabilities, NanoSIMS has been 
successfully used to analyze hydrogen charged samples for a range of 
metallographic systems [231,282,291–293]. 

Thirdly, hydrogen trapping can also be characterized by decorating 
the sample with a chemical or physical agent that can interact with the 
hydrogen and can represent the location of hydrogen. The techniques 
using silver decoration and an integrated microscope with good spatial 
resolution was designated. The silver ions on the surface of a hydrogen- 
charged specimen are reduced by the hydrogen that is desorbed from the 

specimen bulk according to the following reaction: 

Ag+ +Hads → Ag + H+ (12) 

The Ag+ ion can be deposited on the surface using an Ag-containing 
chemical such as AgBr. The reduced metallic Ag atoms reveal the 
hydrogen-rich regions. The hydrogen microprint technique (HMT) 
operates similarly to the silver decoration method, relying on the 
reduction and deposition of silver atoms [294–296]. The main distinc-
tion lies in the use of an Ag(CN)2 aqueous solution, immersing the 
specimen surface for silver decoration, in contrast to the approach using 
an AgBr emulsion. Another similar method decorates the sample surface 
with hydride-forming materials such as palladium to induce a localized 
change in conductivity, which can be measured using a scanning Kelvin 
probe (SKP) which detects hydrogen at the sample surface. The tech-
nique in combination with high-resolution scanning probe microscope is 
called scanning Kelvin probe force microscopy (SKPFM) [297–299]. 
These techniques require a surface that is oxide-free prior to the appli-
cation of the hydrogen-sensitive decoration. The temporal and spatial 
resolutions of these techniques were summarized by Koyama et al. as 
shown in Fig. 24 [86]. 

3.3. Characterization of hydrogen trapping 

The different microstructural features that act as hydrogen traps 
were illustrated in Fig. 17. Fig. 25 and Table 1 illustrate the hydrogen 
trapping energies of common traps (-Eb) in a BCC iron matrix. The 
scatter is attributed to both the trap structure and measurement details 
[184]. Fig. 25 indicates that lattice defects (dislocations and GBs) and 
precipitates with coherent interfaces have a median trapping energy less 
than 50 kJ/mol (often defined as the reversibility limit); whereas less 
coherent precipitates have higher hydrogen trapping energies. Many 
early studies (particularly those before 1990 [279,280]) did not consider 
the contribution of the substructures of the trapping features, e.g. va-
cancies in carbides. It may now be prudent to revisit the trapping 
properties of some of these trap types now that better techniques are 
available to measure the hydrogen within different phases and at 

Fig. 26. Dislocation hydrogen trapping in steel. (A) Bright-field image of dislocations in a martensitic steel, (B) dark-field image of (A). (C) 3-D APT map of carbon 
(blue), deuterium (red) as a marker for hydrogen, and iron (grey) with isoconcentration surfaces (blue surfaces) highlighting the location of dislocations represented 
by clustered carbon. (D) 2-D slice from the marked region in (A) showing the coincident locations of carbon (blue, i.e., dislocations) and deuterium (red). Reproduced 
from [87] (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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different microstructural features. 

3.3.1. Solute elements 
Hydrogen trapping at a solute element in a metal matrix is generally 

insignificant compared to other microstructural traps. Counts et al. used 
first-principle techniques to study the interaction energies of various 
solutes with hydrogen in a BCC iron matrix [221]. The interstitial carbon 
solute atom was found to prefer to occupy the octahedral site, unlike 
hydrogen which prefers the tetrahedral site [186]. The interaction be-
tween the two atoms, 9 kJ/mol as noted in Tables 1 and is insignificant 
compared to the diffusion energy in the BCC matrix (4.5–5.5 kJ/mol as 
per [190]). The substitutional solute atoms were found to be either inert 
or repulsive to nearby hydrogen atoms (Table 1), and the presence of 
these elements does not significantly influence the interaction between a 
hydrogen atom and a vacancy, meaning that the hydrogen trapping at 
the atomic scale is dominated by the vacancy itself, regardless of the 
presence of solute elements. These findings were supported by later 
research [334]. 

3.3.2. Crystal defects 

3.3.2.1. Hydrogen-enhanced strain-induced vacancies. Part 3.3.2 de-
scribes hydrogen-enhanced strain-induced vacancies as a mechanism for 
embrittlement. Hydrogen stabilizes vacancies in many metals and alloys 
[32,47,121,129,218,221,335–340]. Nagumo and Takai [47] reviewed 
this phenomenon and described how hydrogen-enhanced vacancy for-
mation and subsequent vacancy clustering can lead to the formation of 
microvoids, which then coalescence, leading to hydrogen-induced crack 
propagation by ductile micro-void coalescence. An extremely high 
hydrogen charging fugacity (GPa level) can lead to the formation of 
stable hydrogen-vacancy clusters in an abnormally high concentration 
(up to 30 atomic percent), referred to as ‘superabundant vacancies’ by 
Fukai [341]. 

Hydrogen can also be trapped by dislocations, similar to the Cottrell 

Fig. 27. NanoSIMS evidence of twin boundary hydrogen trapping in a 
nickel-based alloy. (A) Secondary electron image of a region of interest (ROI) 
at the proximity of a crack in a deuterium-embrittled alloy 625+ sample. The 
ROI contains the secondary σ phase, dislocation slip band (DSB), transgranular 
and intergranular cracks (TG and IG, respectively), and deformation twin 
boundary (TB). (B) and (C) are the logarithmic secondary ion intensity maps of 
protium (1H) and deuterium (2H), respectively. (D) is the ratio of the loga-
rithmic 2H to logarithmic 1H ratio map which shows the concentration of 
deuterium at TB (green arrowed region). Reproduced from [282] (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) Fig. 28. Density function theory (DFT) calculations for hydrogen trapping 

in TiC. (A) Schematic of the FCC carbide structure. (B) Typical TEM image of 
TiC in ferrite [259]. (C) Solution energy of hydrogen around a TiC precipitate 
with different configurations [361]. (D) Solution energy of hydrogen in metal 
and non-metal vacancies for common FCC precipitates [230]. It is important to 
note that the hydrogen potential differs between (C) and (D) and, as such, 
cannot be directly compared. 
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atmosphere formed by other interstitial solute atoms such as carbon in 
steel [121,129,130]. Hydrogen trapping at dislocations in an untem-
pered martensitic steel specimen was directly observed by Chen et al. 
using cryo-APT [87]. Fig. 26A and B are bright- and dark-field TEM 
images of the dislocation-dense martensitic structure. The APT recon-
struction in Fig. 26C contains carbon isosurfaces that mark the position 
of dislocations. Fig. 26D shows the colocalization of atoms of carbon 
(blue) and deuterium (red) at the dislocations, providing evidence 
supporting the HELP model [30,31]. The opposite effect - hydro-
gen-reduced dislocation mobility was found by Xie et al. [342] in an 
aluminum alloy using TEM with in-situ mechanical loading in a 
hydrogen-containing environment. The authors suggested that this 
could be caused by an additional interplay with vacancies. Hydrogen 
enhanced mobility occurs for both edge and screw dislocations [343]. 
Calculations indicate that the dislocation core interacts with hydrogen 
more strongly than the elastic field of the dislocation and that the in-
crease in core radii and decrease in core energy leads to the reduction of 
dislocation line energy by H [344]. 

In addition to acting as a hydrogen trap, a mobile dislocation can also 
drag hydrogen. Hydrogen transport by dislocations can dominate 

hydrogen re-distribution [345–347]. NanoSIMS analysis of a 625 Ni 
alloy showed deuterium enrichment at dislocation slip bands after a 
crack growth test with in-situ charging. However, when the alloy was 
charged but not strained, there was no deuterium localization, indi-
cating deuterium transport by mobile dislocations [282]. Dislocation 
movement induced by hydrogen diffusion has also been recently 
recorded [348]. 

Since GBs interfere with dislocation glide, hydrogen transport by 
dislocations can lead to hydrogen accumulation at GBs, which may 
promote hydrogen-induced decohesion and subsequent intergranular 
fracture [349,350]. This relationship between strain and hydrogen dis-
tribution may also explain the strain rate dependence of HE, as discussed 
in Section 2.1.4. A high strain rate results in high-speed dislocations that 
cannot transport hydrogen, reducing hydrogen drag and causing less 
embrittlement. A low strain rate produces slower-moving dislocations 
that transport hydrogen, contributing to HE. 

Grain boundaries can also trap hydrogen, which has been observed 
by APT [87]. Compared to vacancies and dislocations, hydrogen 
behavior is more complex at GBs, and depends on the crystal structure of 
the host matrix and the geometric structure of the GB. In BCC metals, 
GBs generally act as trapping sites since the hydrogen diffusivity at GBs 
is lower than the lattice diffusivity. In BCC iron, hydrogen generally 
reduces the GB cohesion, which leads to fracture at a sufficiently high 
hydrogen concentration [262]. Prior-austenite GBs are particularly 
susceptible [123]. In FCC metals, where lattice diffusion of hydrogen is 
slower, GBs can act as hydrogen traps and offer a rapid diffusion path for 
hydrogen, depending on the relative diffusivity in the FCC lattice and 
along the particular GBs [351]. In austenitic steel, Σ5 and Σ9 GBs trap 
hydrogen, but not Σ3 GBs [352]. HE in FCC nickel alloys generally leads 
to intergranular fracture. The effect of hydrogen on grain boundary 
behavior remains difficult to predict. The exact interplay of GBs with 
hydrogen is a topic deserving of more emphasis in future research [113, 
353]. 

Twin boundaries (TB) are more prevalent in FCC metals such as 
nickel. Using SKPFM and TDA, Koyama et al. concluded that TB trapping 
is only slightly stronger than other reversible traps such as dislocations 
[33,354]. Aboura et al. used NanoSIMS to identify deuterium localiza-
tion at twin boundaries in a deuterium-embrittled nickel alloy [282]. 
Fig. 27A is a secondary electron image from this study that contains a 
region with a deformation-induced twin boundary (TB, green arrow). 
Protium (1H, the reference hydrogen background in this experiment), 
and deuterium (2H, real signal) were mapped, as shown in Fig. 27B and 
C, respectively. The ratio between the logarithmic concentrations of 2H 
and the logarithmic concentration of 1H from Fig. 27B and C, respec-
tively, then led to Fig. 27D which shows a bright line (high 2H intensity) 
along the identified TB, showing deuterium trapped at the TB. Although 
trapping at TB has been observed, the exact role of TB for bulk HE, i.e., 
whether hydrogen at TB facilitates or mitigates HE, is still a topic of 
discussion [33,354]. 

3.3.3. Precipitates and second phases 
Precipitates and second phase particles in a solid solution matrix can 

act as benign hydrogen traps and can significantly increase HE resis-
tance by reducing the available hydrogen [17,28,49,289,355]. In ferritic 
steels, fine precipitates of the carbides of transition metals, e.g., Ti, V, 
Nb, and Mo, can be produced with a high number density, with tunable 
hydrogen trap strengths, which are thought to be controlled by their 
interface coherencies [356–360]. 

DFT has been used to investigate the hydrogen trapping mechanism 
of carbides with a rock-salt (NaCl) structure (Fig. 28A), such as TiC (TEM 
image in Fig. 28B), V4C3, and NbC [214,361]. Fig. 28C shows the 
calculated hydrogen solution energy around the interface between a TiC 
particle (right-hand side) in ferrite (left-hand side) [361]. The authors 
found that i) the interface of the TiC particle is an effective trap; ii) a 
carbon vacancy inside the TiC bulk is the strongest trap, however it is 
difficult for hydrogen to reach this trap because of the high energy 

Fig. 29. APT characterization of hydrogen trapping by face-centered 
cubic/rocksalt-structure carbides. (A) Hydrogen (deuterium) in TiC [281]. 
(B) Result for V4C3 [194]. (C) Result for V–Mo carbide from Ref. [192]. (D) 
Result for NbC from Ref. [87]. 
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barrier; iii) this energy barrier can be lowered in the presence of a high 
number of carbon vacancies that form a channel for hydrogen pene-
tration into the TiC bulk (black broken line); and iv) the presence of 
extra hydrogen atoms in a trap can significantly reduce the de-trapping 
energy and facilitate the penetration of hydrogen, which is likely the 
case for high-fugacity/electrolytic hydrogen charging (red broken line). 
Fig. 28D shows the trapping energies of a range of metal and non-metal 
vacancies in common FCC precipitates evaluated using DFT [230]. This 
calculation suggests that carbon vacancies are stronger hydrogen traps 
than metal vacancies. 

APTq has been used to study hydrogen trapping at fine FCC carbide 
precipitates [194,280,281,283,284]. Takahashi and co-workers pio-
neered the use of gaseous hydrogen charging and cryo-APT to study 
hydrogen trapping at TiC and V4C3 as shown in Fig. 29A and B, 
respectively, confirming that these carbides act as hydrogen traps in 
steels [194,281]. Later, Chen et al. [192] used cryoAPT to investigate 
the hydrogen trapping mechanism of a deuterium-charged V–Mo-mixed 
carbide. They concluded that hydrogen was located within the pre-
cipitates using a statistical approach to normalize and superimpose the 
concentration profiles across all of the measured particles, as shown in 
Fig. 29C. 

The V–Mo carbides studied by Chen et al. had more carbon vacancies 
than those studied by Takahashi et al. due to the presence of molybde-
num as a substitutional metal element at vanadium sites [234]. Chen 
et al.‘s finding of interior trapping of hydrogen in 

carbon-vacancy-containing carbide was consistent with Di Stefano 
et al.‘s numerical prediction about hydrogen penetration in the presence 
of abundant carbon vacancies and charged hydrogen [361]. More 
recently, Chen et al. used the same protocol to investigate hydrogen 
trapping in a well-annealed, spherical, incoherent NbC, which should 
have few carbon vacancies. Fig. 29D shows that hydrogen was trapped 
at the NbC/ferrite interface, consistent with the computational predic-
tion that the interface acts as a hydrogen trap [229]. Similarly, SKPFM 
studies showed trapping at the interface for large, incoherent TiC par-
ticles in a ferritic matrix [362]. Hydrogen trapping in this type of FCC 
carbide is therefore related to both the interface and the presence of 
defects within the precipitate. 

In addition to transition metal carbides, cementite and epsilon (ε) 
carbide in steels also act as hydrogen traps as demonstrated in Refs. 
[279,363–365], respectively. These carbides are believed to primarily 
trap hydrogen in the carbon vacancies at the interface, although 
high-resolution observations are required for verification. 

Apart from carbides, metallic particles (such as copper) have also 
been identified as hydrogen traps [311,366–368], although the exact 
trapping sites for these particles has not been demonstrated. In oxide 
dispersion strengthened (ODS) steels, simulations suggest that hydrogen 
trapping occurs through oxygen-vacancy pairs at the interface of oxide 
particles [369]. Some sulfide inclusions such as MnS can in theory also 
trap hydrogen strongly, and such inclusions are known to cause local 
HEDE at their incoherent interfaces where the hydrogen concentration 

Fig. 30. Hydrogen trapping in retained austenite in ferrite. (A) 3-D APT map with austenite-ferrite interface highlighted by a carbon isoconcentration surface. 
(B) Atom maps of iron, carbon, and hydrogen (1H, not deuterium) from the highlighted region in (A). (C) Atomic concentration across the interface from cylindrical 
the region highlighted in (A) [351]. 
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leads to fracture initiation [370,371–375]. 
Retained austenite, an FCC phase in the BCC iron matrix, is also an 

important hydrogen trap. Hydrogen has a much lower diffusivity and a 
much higher solubility in austenite than in ferrite or martensite 
[376–382]. APT visualizations of hydrogen in retained austenite are 
shown in Fig. 30 [377]. In some advanced high-strength steels, retained 
austenite in the microstructure can undergo an austenite-to-martensite 
phase transformation during deformation. This 
transformation-induced plasticity (TRIP) can significantly increase 
ductility [383]. However, this transformation releases any hydrogen 
dissolved in the austenite (as the austenite transforms) into the freshly 
formed martensite, which can be severely embrittled by the hydrogen 
[28,378,380,384]. Therefore, the use of austenitic phases as hydrogen 
traps requires caution that any subsequent loading or thermal environ-
ment does not lead to detrimental hydrogen release [385,386]. 

In hydride-forming metals such as titanium and zirconium, some 
second phase particles have also been found to trap hydrogen [232, 
387–389]. APT observations of a Ti–Mo alloy, Fig. 31A, revealed that 
hydrogen can be trapped at the interface of the Mo-rich second phase 
[388]. NanoSIMS observations have also shown the hydrogen trapping 
at the Fe- and Cr-rich phases in a Zr–Fe–Cr alloy, Fig. 31B [231]. These 
hydrogen traps can play an essential role in the redistribution of 
hydrogen upon thermal cycling in the nuclear applications in which 
these Zr alloys are used, which can cause precipitation and 
re-orientation of hydrides and can lead to delayed hydride cracking 

[98]. 

4. Microstructural engineering of hydrogen traps for 
embrittlement mitigation 

For a closed system with a finite amount of hydrogen (i.e., IHE), the 
addition of microstructural hydrogen traps is expected to be effective for 
HE mitigation [28]. Where hydrogen supply is infinite (i.e., EHE), traps 
are not generally thought to be viable strategy for mitigation, as the 
traps saturate in an open system with a permanent source of hydrogen 
[390], however modeling has suggested that trapping can reduce the 
critical hydrogen concentration in open systems under cyclic loading 
[196]. In this section, we review the role of hydrogen traps for the 
mitigation of HE. 

Exploiting trapping behavior in the design of embrittlement-resistant 
alloys requires a better understanding of the relationship between 
microstructural hydrogen trapping and macroscopic HE mitigation. 
First, we reiterate the key considerations proposed by Pressouyre [28, 
155,391] to define whether a trap is ‘good’ or ‘bad’ for reducing HE 
susceptibility in a particular application.  

1. What is the form and the possible amount of the hydrogen supply? i. 
e., is hydrogen supply internal or environmental, continuous or 
intermittent, infinite or finite? 

Fig. 31. Second phase hydrogen trapping in titanium and zirconium alloys. (A) APT atom maps of the primary α-Ti phase (blue), secondary β-Ti-Mo phase 
(red), and hydrogen (dark yellow) [388]. (B) NanoSIMS mapping of hydrogen trapping in Zr–Fe/Cr phases in zirconium alloys [231] (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2. Is the material subjected to elastic or plastic deformation in the 
presence of hydrogen? i.e., what is the interplay of dislocations and 
plasticity with hydrogen?  

3. What microstructural sites are most susceptible to HE? i.e., does the 
HE-induced fracture occur transgranularly, intergranularly or at a 
second phase interface?  

4. What is the strength of the benign hydrogen traps in a material 
compared to that of the HE-susceptible features at the temperature of 
service? i.e., do the benign traps compete with the features that also 
attract hydrogen, but contribute to HE, such as dislocations or MnS 
interfaces? Are the traps reversible? 

4.1. Grain boundaries and dislocations 

A finer grain size and a lower dislocation density increase EHE 
resistance (Fig. 8) [91]. Grain refinement is effective in a range of alloy 
systems including ferritic steels [392,393], martensitic steels (prior--
austenite grain size) [123,394], austenitic steels [395–400], nickel 
[401], and FCC high-entropy alloys [402,403]. The benefit is attributed 
to increased hydrogen trapping due to more GB areas and, for the case 
where hydrogen supply is finite, less hydrogen per unit GB area [404]. A 

graded grain structure with fine-grains at the surface can also provide 
better HE resistance than a homogeneous grain structure [405], while 
retaining a high strength-ductility combination [406]. 

Dislocations are generally considered to be traps that are unfavorable 
for HE mitigation [407]. In an exception, it was recently reported that 
for severe deformation of pure iron by cold work, above a certain 
dislocation density, the HE drops slightly due to the trapping effect of 
dislocation cell walls [408]. Fig. 32A shows that HE increased as cold 
work increased from 0% to 70% and decreased thereafter (red arrow). 
TEM revealed that the 80% cold work specimen has a substructure of 
dislocation cells, as shown in Fig. 32D. The authors attribute this 
decrease of HE susceptibility an effect similar to grain refinement, i.e., 
increasing the density of trapping sites and limiting the availability of 
hydrogen within the dislocation cells, as illustrated in Fig. 32E. 

It has also been possible to fabricate alloys with desired GB orien-
tations to mitigate GB fracture, an approach known as ‘grain boundary 
engineering’ [409,410]. The efficacy of GB engineering for reducing HE 
susceptibility in FCC alloys was demonstrated by Bechtle et al. [124]. 
Lower HE susceptibility was measured in the Ni alloy specimens with 
more low-energy boundaries (such as twin boundaries). Similar results 

Fig. 32. Effect of dislocation cells on internal hydrogen embrittlement 
(IHE) susceptibility. (A) IHE susceptibility (defined by elongation loss) as a 
function of dislocation density, relating to the extent of cold work. TEM mi-
crographs of dislocation structures in (B) undeformed, (C) 50%-deformed, and 
(D) 80%-deformed specimens. (E) Schematic illustration of the dislocation cells 
trapping hydrogen to increase the HE resistance. Reproduced from [408]. 

Fig. 33. Efficacy of TiC for internal hydrogen embrittlement (IHE) resis-
tance. (A) Bright-field TEM micrograph of a specimen with high density of TiC 
(Alloy C charged for 1 h, corresponding to the data shown in (F)). (B) Dark-field 
TEM micrograph of (A) from the second-phase diffraction spot indicated inset in 
(A). The bright spots are TiC precipitates. (C) Saturated hydrogen content in 
various tested materials showing the greater capacity for H in the sample with 
precipitates (Alloy C, Q&T). (D), (E), and (F) highlight the tensile properties of 
uncharged specimens (blue arrows) and the specimens charged with 7% 
hydrogen (red arrows) from the materials containing negligible, low, and high 
numbers, of TiC. Reproduced and adapted from [416] (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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were later measured for other FCC alloy systems [411–414]. The 
concept is that a higher density of ‘special’ GBs that have higher co-
herency with adjacent grains (i.e., Σ number ≤29, such as Σ3, Σ5, etc.) 
lead to a lower tendency to trap hydrogen atoms. This GB engineering 
approach has only been demonstrated for FCC alloys, which are more 
susceptible to hydrogen-induced intergranular failure than BCC alloys. 

The interaction of hydrogen and other species segregated at GBs is 
still largely unknown, particularly the effects on hydrogen trapping and 
HE [211]. Segregation also varies from boundary to boundary and de-
pends on the boundary structure. Correlative TEM-APT [415] allows 
measurement of both structure and elemental segregation at GBs. Future 
studies may also use NanoSIMS, cryo-APT and/or mechanical testing to 
enable a better understanding of the relationship between elemental 
segregation, hydrogen trapping and HE. 

4.2. Hydrogen trapping at particles 

Fine precipitates have drawn the most attention in the area of 
hydrogen trapping for HE mitigation because they have the potential to 
be incorporated into microstructures at significant number densities and 
hence provide a high trapping capacity [297,320,416–420]. They are 
also known to have a concomitant hardening effect [421,422]. Research 
in this area has mainly focused on BCC steels with carbide or nitride 
precipitates based on transition metals (e.g., titanium, vanadium, mo-
lybdenum, chromium, and niobium). 

The use of microstructural traps to inhibit hydrogen assisted fatigue 
was theoretically described by Fernandez-Sousa et al. [196] for condi-
tions where the loading cycle was significantly faster than the time 
required to deliver hydrogen to the process zone by either bulk diffusion 
or dislocation transport. Efficacy for IHE was experimentally demon-
strated by Verbeken, Depover, and their co-workers, using a protocol 
combining TDA, SSRT, heat treatment (to control the number density of 
precipitates) and TEM for carbonitride characterization [320,416–420]. 
Fig. 33 [416] is an example of these results. Fig. 33A and B are example 
TEM images of carbide precipitates. TDA provided the hydrogen content 
of each specimen (Fig. 33C) for charging conditions in which the 
hydrogen reached equilibrium (hydrogen saturation) after a range of 
heat treatment conditions that led to various carbide densities. The 
hydrogen capacity was related to the number of carbides, increasing 
with the number of traps. All specimens were susceptible to HE when 
saturated with hydrogen. However, specimens with similar hydrogen 
contents that contain precipitates (here, TiC) displayed lower HE sus-
ceptibility (defined by ductility loss). In Fig. 33C, the as-quenched 
(As-Q) specimen of Alloy C was saturated at 7 wt ppm hydrogen, but 
the quenched-and-tempered (Q&T) Alloy C with more traps had a ca-
pacity of 12 wt ppm (highlighted in red). These specimens were 
heat-treated for 10 min, 2 h, and 1 h to create specimens that contained 
little TiC, a low number density of TiC (over-aged), and a high number 
density of TiC (peak-aged). Specimens were deliberately charged with 7 
wt ppm hydrogen for mechanical testing, in order to match the hydrogen 
content in the differently aged specimens. The tensile strengths and 
elongations for charged and uncharged specimens in each condition are 
shown in Fig. 33 D. Those charged with 7 wt ppm hydrogen are marked 
‘charged*‘. For ease of comparison, each heat treatment condition was 
labeled the uncharged (blue) and 7 wt ppm charged (red) stress-strain 
curve. The samples containing TiC (Fig. 33E and F) had significantly 
less loss in ductility when charged with hydrogen. In addition to the 
number density of carbides, the size of carbides can significantly impact 
hydrogen embrittlement resistance, particularly with variations in 
tempering time. In this work, titanium carbides were found to enlarge 
and lose coherency during the tempering process. Consequently, the 
corresponding carbides grow excessively large, and their interface with 
the matrix becomes too incoherent to adequately trap hydrogen from an 
electrochemical source. 

Verbeken, Depover, and their co-workers studied steels containing 
vanadium, molybdenum, and chromium carbides [417–419], and also 
confirmed the beneficial role of these carbides for mitigating IHE, 
consistent with an earlier study of vanadium-alloyed steels [423]. A 
comparison of the mitigation efficacy of Mo, V, and Cr carbides found 
that, for similar steel strength, Mo and V carbides were more effective 
than Cr carbides for HE mitigation [424]. In alloys with the same 
composition, the microstructures with finer carbides and higher trap 
density trapped hydrogen more effectively [425]. For NbCs, small 
well-dispersed NbCs reduced HE susceptibility [426], although undis-
solved NbC precipitates remaining after austenization did not contribute 
measurably to HE resistance [427]. More recently, tantalum carbide 
precipitate (TaCs) was found to have a similar effect on HE mitigation 
[428,429]. 

For martensitic steels, Ti and Mo carbides were confirmed to have a 
positive effect on HE mitigation [424,430]. To further understand HE 
mechanisms in martensitic steels that contain oxide and carbide 

Fig. 34. The role of trapped and diffusible hydrogen in HE. (A) SSRT results 
from a Fe-0.3C-0.4Si-0.5Mn-1.0Cr-0.8Mo-0.05V-0.04Nb (wt. %) martensitic 
steel with small amounts (less than 0.04 wt%) of Al, S, Cu, Co and Ca, which is 
austenitized, quenched, and tempered at 710 ◦C for 30 min. Both V- and U- 
shaped notches were used in plate tensile samples. The ductility decreased in 
the following order: specimen without hydrogen (green curves), specimens with 
trapped hydrogen (red curves), and specimens with diffusible and trapped 
hydrogen (blue curves). SEM fracture surface observations of (B) uncharged 
specimen with dimpled features, (C) specimen with trapped hydrogen, also 
with dimpled features showing oxide inclusions at the centers of the dimples, 
(D) the specimen with trapped hydrogen showing additional carbide inclusions 
at the centers of the dimples. (E) Quasi-cleavage for specimens with both 
trapped and mobile hydrogen. Note the scale difference among the micro-
graphs. Reproduced from [370] (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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inclusions, Feaugas, Guedes, and their co-workers combined SSRT 
testing on notched samples with in-situ hydrogen permeation, TDA, 
fractography, and finite element modeling (FEM) [370] (Fig. 34). They 
concluded that the trapped hydrogen leads to ductility loss, but still 
ductile fracture, whereas the presence of both mobile and trapped 
hydrogen caused greater ductility loss and brittle fracture. They 
compared plate tensile martensitic samples with both V- and U-sharped 
notches under three conditions: i) uncharged, ii) hydrogen-charged and 
then room-temperature desorbed (leaving only trapped hydrogen in the 
specimens) and iii) in-situ hydrogen-charged with a high hydrogen flux 
near the surface. Fig. 34A shows that the specimens with trapped 
hydrogen (green curve) were slightly less ductile than the uncharged 
specimens (green), but the specimens with both mobile hydrogen and 
trapped hydrogen (blue curves, labeled H flux) were much more sus-
ceptible to HE. Other studies showed little HE in hydrogen pre-charged 
then desorbed specimens with a low hydrogen content at the surface 
[431–433]. Fig. 34B and C shows, respectively, the ductile (dimpled) 
fracture surface of the uncharged specimen and the specimen with 
trapped hydrogen. Both specimens contained oxides at the base of the 
dimples, but the specimens with trapped hydrogen also had dimples 
associated with small carbide inclusions (Fig. 34D). The specimens with 
high hydrogen flux at the surface displayed brittle fracture with the 
HE-characteristic quasi-cleavage (Fig. 34E). These observations suggest 
that inclusions and carbides, which are hydrogen traps, can enhance 
ductile fracture, but also be responsible for the nucleation of cracks if 

diffusible hydrogen is present. 

4.3. Microstructural engineering using second phases 

Another strategy is to take advantage of the difference in hydrogen 
diffusivity in different phases [434]. Because hydrogen diffuses more 
slowly in austenite than in ferrite, percolated, three-dimensionally 
interconnected austenite (Fig. 35A) leads to lower hydrogen perme-
ability than an open structure (Fig. 35B) or one in which the austenite is 
not fully interconnected (Fig. 35C). This is demonstrated in Fig. 35D, 
which shows the hydrogen diffusivity for steel samples with different 
fractions of austenite and different levels of interconnectivity. The first 
three datapoints (circles) show that the hydrogen diffusivity decreases 
with an increasing fraction of retained austenite in bainite, which can be 
associated with the degree of connectivity of the austenite. However, the 
hydrogen diffusivity of a conventional equiaxed ferritic-austenitic 
microstructure (square data point) is much higher, even though the 
fraction of austenite is higher, which can be explained by the fact that, 
unlike for bainite, the austenite is not interconnected (percolated) in this 
microstructure. 

Utilizing austenite as a hydrogen barrier, Sun et al. examined the HE- 
induced deformation modes of two medium-Mn steels, one austenite- 
based (percolated) and one ferrite-based (not percolated) schemati-
cally illustrated in Fig. 35E and F, respectively [435]. Ductile defor-
mation behavior of the ferrite-based microstructure was attributed to 

Fig. 35. Hydrogen percolation in austenite-containing steels. (A), (B), and (C) are schematic illustrations of a microstructure with percolating austenite, open 
structure, or a loss of percolation, respectively, with respect to the hydrogen ingress from the top. (D) shows hydrogen diffusivity as a function of the fraction of 
retained austenite for percolated austenite in a bainitic ferrite matrix (circular data points) compared to a conventional austenite-ferrite microstructure (square data 
point). (A)–(D) are reproduced from Ref. [334]. (E) and (F) are schematic illustrations of the hydrogen diffusion and distribution of a steel matrix with disconnected 
(E) and interconnected (F) austenite, reproduced from Ref. [435]. 
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hydrogen-enhanced local plastic flow. The austenite-based microstruc-
ture failed by interfacial decohesion attributed to hydrogen accumula-
tion at phase boundaries and a subsequent strain-induced martensitic 
transformation that is particularly susceptible to HE. 

To further optimize the design of a HE-resistant microstructure, Sun 
et al. took advantage of typically undesirable chemical heterogeneity 
within the austenite grains in a medium-Mn steel [436] to achieve su-
perior embrittlement resistance. Fig. 36A and B shows the 
austenite-ferrite dual phase microstructure with an uneven Mn distri-
bution by electron backscattering diffraction (EBSD) and electron 
energy-dispersive X-ray spectroscopy (EDX), respectively. The mecha-
nism is shown schematically in Fig. 36C and D. Mn enrichment increases 
the stability of the austenite and suppresses the phase transformation to 
martensite (Fig. 36C). The Mn-stabilized austenite remains ductile, 
blunts the crack tip, and ultimately reduces the rate of crack propagation 

(Fig. 36D). Fig. 36E shows that HE resistance (represented by the 
elongation of hydrogen pre-charged specimens) of the specimen with 
Mn heterogeneity was improved by factor of two. 

5. Summary and outlook 

We have examined the variables, the causes, and the mechanisms of 
HE, introduced the principle of hydrogen trapping, described the tech-
niques that have advanced the understanding of hydrogen trapping, and 
discussed several microstructural designs that can provide increased HE 
resistance. Much work has been devoted to understanding hydrogen 
trapping and many studies indicate that the incorporation of suitable 
traps can decrease EHE when the transport of hydrogen to the process 
zone is limited, but there is still much research required to further 
advance our understanding of HE and hydrogen trapping for the 
development of HE-resistant alloys. 

Hydrogen interactions with engineering alloys are multiscale. An 
understanding requires an understanding of the interaction between 
hydrogen atoms and the atomic scale microstructural features (grain 
boundaries, phases, precipitates, solute atoms, solute clusters, in-
terfaces, as well as the multi-scale features that control plasticity and 
failure (vacancies, dislocations, twins, voids, cracks). 

Understanding the time-dependent, multiscale effects of an element 
that is difficult to measure is a formidable experimental and computa-
tional challenge. Experimental and modeling approaches are required 
from the atomistic to macro length scales. Recent experimental de-
velopments at the atomic length-scale, such as cryo-APT, together with 
improvements in in-situ testing, both on microscopes and at synchrotron 
and neutron beamlines, now mean that characterization is more viable. 
Modeling approaches (including new methods using quantum me-
chanics, crystal plasticity, evolutionary field models and dislocation 
dynamics) have recently improved to the point where the time and 
length scales accessible through experiment and modeling now meet. 

Further effort to better relate the role of different microstructural 
traps on plasticity and fracture modes will allow the creation of 
hydrogen-induced deformation and fracture maps, similar to conven-
tional plasticity and fracture maps with the additional consideration of 
the influence of hydrogen. Our fundamental understanding of hydrogen 
trapping so far has involved only unstressed specimens, and stress is 
likely to change the energetic landscape that drives trapping behavior. 
Given that mechanical load is always present, it is necessary in the future 
to consider the relationship between trap strength and applied stress to 
better understand the efficacy of hydrogen trapping for withstanding 
HE. 

It may also be possible to develop ‘hydrogen trap diagrams’, similar 
to conventional phase diagrams but treat individual traps as thermo-
dynamic entities, considering environmental influences such as tem-
perature, pressure, stress, and hydrogen content related to the structural 
stability of the trap and the trapping strength for hydrogen, much like 
defect phase diagrams [437]. 

The embrittlement of high-strength engineering alloys in hydrogen- 
containing environments is a longstanding problem. Much has been 
done. There is much more to do. Despite some progress, the issue is still 
largely managed in industry by using lower strength, less hydrogen- 
susceptible alloys, sacrificing efficiencies in design. The dawn of a 
hydrogen economy completely changes the picture. The hydrogen 
economy requires the extensive use of engineering alloys for applica-
tions from electrolyzers to metallic membranes for gas separation, 
components for high-pressure hydrogen transport and storage (e.g. 
pipelines), compressors, liquid hydrogen containers and gas turbines for 
combustion. This new area brings renewed urgency to mitigating the 
hydrogen embrittlement challenge. 
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[65] Martínez-Pañeda E, Díaz A, Wright L, Turnbull A. Generalised boundary 
conditions for hydrogen transport at crack tips. Corrosion Sci 2020;173:108698. 
https://doi.org/10.1016/J.CORSCI.2020.108698. 

[66] Murakami Y, Matsunaga H. The effect of hydrogen on fatigue properties of steels 
used for fuel cell system. Int J Fatig 2006;28:1509–20. <Go to ISI>://WOS: 
000240811300011. 
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[384] Hempel C, Mandel M, Schröder C, Quitzke C, Schimpf C, Wendler M, Volkova O, 
Krüger L. Influence of microstructure on hydrogen trapping and diffusion in a pre- 
deformed TRIP steel. Int J Hydrogen Energy 2023;48:4906–20. https://doi.org/ 
10.1016/J.IJHYDENE.2022.11.017. 

[385] Wu K, Lu X, Zhou P, Li W, Jin X. Improved resistance to hydrogen embrittlement 
by tailoring the stability of retained austenite. Mater Sci Technol 2017;33. 
https://doi.org/10.1080/02670836.2017.1280119. 

[386] Laureys A, Pinson M, Depover T, Petrov R, Verbeken K. EBSD characterization of 
hydrogen induced blisters and internal cracks in TRIP-assisted steel. Mater Char 
2020;159:110029. https://doi.org/10.1016/J.MATCHAR.2019.110029. 

[387] Silverstein R, Eliezer D, Tal-Gutelmacher E. Hydrogen trapping in alloys studied 
by thermal desorption spectrometry. J Alloys Compd 2018;747. https://doi.org/ 
10.1016/j.jallcom.2018.03.066. 

[388] Yan F, Mouton I, Stephenson LT, Breen AJ, Chang Y, Ponge D, Raabe D, Gault B. 
Atomic-scale investigation of hydrogen distribution in a Ti Mo alloy. Scripta 
Mater 2019;162. https://doi.org/10.1016/j.scriptamat.2018.11.040. 

[389] Breen AJ, Mouton I, Lu W, Wang S, Szczepaniak A, Kontis P, Stephenson LT, 
Chang Y, da Silva AK, Liebscher CH, Raabe D, Britton TB, Herbig M, Gault B. 
Atomic scale analysis of grain boundary deuteride growth front in Zircaloy-4. 
Scripta Mater 2018;156. https://doi.org/10.1016/j.scriptamat.2018.06.044. 

[390] Dadfarnia M, Sofronis P, Neeraj T. Hydrogen interaction with multiple traps: can 
it be used to mitigate embrittlement? Int J Hydrogen Energy 2011;36:10141–8. 
https://doi.org/10.1016/J.IJHYDENE.2011.05.027. 

[391] Wei FG, Tsuzaki K. Hydrogen trapping phenomena in martensitic steels, gaseous 
hydrogen embrittlement of materials in energy technologies: the problem. Its 
Char Eff Particular Alloy Classes 2012:493–525. https://doi.org/10.1533/ 
9780857093899.3.493. 

[392] Chen S, Zhao M, Rong L. Effect of grain size on the hydrogen embrittlement 
sensitivity of a precipitation strengthened Fe–Ni based alloy. Mater Sci Eng 2014; 
594:98–102. https://doi.org/10.1016/J.MSEA.2013.11.062. 

[393] Park C, Kang N, Liu S. Effect of grain size on the resistance to hydrogen 
embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing. 
Corrosion Sci 2017;128:33–41. https://doi.org/10.1016/J.CORSCI.2017.08.032. 

[394] Gomes da Silva MJ, Cardoso JL, Carvalho DS, Santos LPM, Herculano LFG, Gomes 
de Abreu HF, Pardal JM. The effect of prior austenite grain size on hydrogen 
embrittlement of Co-containing 18Ni 300 maraging steel. Int J Hydrogen Energy 
2019;44:18606–15. https://doi.org/10.1016/J.IJHYDENE.2019.05.074. 

[395] Macadre A, Nakada N, Tsuchiyama T, Takaki S. Critical grain size to limit the 
hydrogen-induced ductility drop in a metastable austenitic steel. Int J Hydrogen 
Energy 2015;40:10697–703. https://doi.org/10.1016/J.IJHYDENE.2015.06.111. 

[396] Fan YH, Zhang B, Wang JQ, Han EH, Ke W. Effect of grain refinement on the 
hydrogen embrittlement of 304 austenitic stainless steel. J Mater Sci Technol 
2019;35:2213–9. https://doi.org/10.1016/J.JMST.2019.03.043. 

[397] Noh HS, Kang JH, Kim SJ. Effect of grain size on hydrogen embrittlement in stable 
austenitic high-Mn TWIP and high-N stainless steels. Int J Hydrogen Energy 2019; 
44:25076–90. https://doi.org/10.1016/J.IJHYDENE.2019.07.227. 

[398] Park IJ, min Lee S, hee Jeon H, Lee YK. The advantage of grain refinement in the 
hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. 
Corrosion Sci 2015;93:63–9. https://doi.org/10.1016/J.CORSCI.2015.01.012. 

[399] Zan N, Ding H, Guo X, Tang Z, Bleck W. Effects of grain size on hydrogen 
embrittlement in a Fe-22Mn-0.6C TWIP steel. Int J Hydrogen Energy 2015;40: 
10687–96. https://doi.org/10.1016/J.IJHYDENE.2015.06.112. 

[400] Bai Y, Momotani Y, Chen MC, Shibata A, Tsuji N. Effect of grain refinement on 
hydrogen embrittlement behaviors of high-Mn TWIP steel. Mater Sci Eng, A 2016; 
651:935–44. https://doi.org/10.1016/J.MSEA.2015.11.017. 

[401] Lawrence SK, Yagodzinskyy Y, Hänninen H, Korhonen E, Tuomisto F, Harris ZD, 
Somerday BP. Effects of grain size and deformation temperature on hydrogen- 
enhanced vacancy formation in Ni alloys. Acta Mater 2017;128:218–26. https:// 
doi.org/10.1016/J.ACTAMAT.2017.02.016. 

[402] Koyama M, Ichii K, Tsuzaki K. Grain refinement effect on hydrogen embrittlement 
resistance of an equiatomic CoCrFeMnNi high-entropy alloy. Int J Hydrogen 
Energy 2019;44:17163–7. https://doi.org/10.1016/J.IJHYDENE.2019.04.280. 

[403] Wang H, Koyama M, Hojo T, Akiyama E. Hydrogen embrittlement and associated 
surface crack growth in fine-grained equiatomic CoCrFeMnNi high-entropy alloys 
with different annealing temperatures evaluated by tensile testing under in situ 
hydrogen charging. Int J Hydrogen Energy 2021;46:33028–38. https://doi.org/ 
10.1016/J.IJHYDENE.2021.07.136. 

[404] Zhou XY, Yang XS, Zhu JH, Xing F. Atomistic simulation study of the grain-size 
effect on hydrogen embrittlement of nanograined Fe. Int J Hydrogen Energy 
2020;45:3294–306. https://doi.org/10.1016/J.IJHYDENE.2019.11.131. 

[405] Song SW, Lee T, Lee CS. Graded grain structure to improve hydrogen- 
embrittlement resistance of TWIP steel. Crystals 2020;10:1045. https://doi.org/ 
10.3390/CRYST10111045. 2020, Vol. 10, Page 1045. 

[406] Fang TH, Li WL, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity 
in gradient nano-grained copper. Science (1979) 2011;331:1587–90. https://doi. 
org/10.1126/SCIENCE.1200177/SUPPL_FILE/PAP.PDF. 

[407] Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the 
hydrogen embrittlement susceptibility of Fe-C-X alloys: an experimental proof of 
the HELP mechanism. Int J Hydrogen Energy 2018;43:3050–61. https://doi.org/ 
10.1016/J.IJHYDENE.2017.12.109. 

[408] Chen L, Xiong X, Tao X, Su Y, Qiao L. Effect of dislocation cell walls on hydrogen 
adsorption, hydrogen trapping and hydrogen embrittlement resistance. Corrosion 
Sci 2020;166:108428. https://doi.org/10.1016/J.CORSCI.2020.108428. 

[409] Palumbo G, King PJ, Aust KT, Erb U, Lichtenberger PC. Grain boundary design 
and control for intergranular stress-corrosion resistance. Scripta Metall Mater 
1991;25:1775–80. https://doi.org/10.1016/0956-716X(91)90303-I. 

[410] Taji I, Hajilou T, Ebner AS, Scheiber D, Karimi S, Plesiutschnig E, Ecker W, 
Barnoush A, Maier-Kiener V, Johnsen R, Razumovskiy VI. Hydrogen assisted 
intergranular cracking of alloy 725: the effect of boron and copper alloying. 
Corrosion Sci 2022;203:110331. https://doi.org/10.1016/J. 
CORSCI.2022.110331. 

[411] DeMott RW, Kernion S, Leff AC, Taheri ML. Mitigation of hydrogen embrittlement 
in alloy custom age 625 PLUS® via grain boundary engineering. Mater Sci Eng 
2021;818:141377. https://doi.org/10.1016/J.MSEA.2021.141377. 

[412] Kwon YJ, Jung SP, Lee BJ, Lee CS. Grain boundary engineering approach to 
improve hydrogen embrittlement resistance in FeMnC TWIP steel. Int J Hydrogen 
Energy 2018;43:10129–40. https://doi.org/10.1016/J.IJHYDENE.2018.04.048. 

[413] Kwon YJ, Seo HJ, Kim JN, Lee CS. Effect of grain boundary engineering on 
hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates. Corrosion 
Sci 2018;142:213–21. https://doi.org/10.1016/J.CORSCI.2018.07.028. 

[414] Hu H, Zhao M, Chen S, Rong L. Effect of grain boundary character distribution on 
hydrogen embrittlement in Fe–Ni based alloy. Mater Sci Eng, A 2020;780:139201. 
https://doi.org/10.1016/J.MSEA.2020.139201. 

[415] Kuzmina M, Herbig M, Ponge D, Sandlöbes S, Raabe D. Linear complexions: 
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